About this topic
Summary Quantum computing is contrasted with classical computing. The foundation of classical computing starts with a bit, a unit of information that can be in one of two states, 0 or 1. In quantum computing, the analogue of a bit is a qubit. For a qubit, 0 and 1 are just two possible states that a qubit could be in among others. The other possible physical states are motivated by possibilities of quantum systems such as superpositions. The idea behind a qubit as a means for computing has historically been speculative, but recent technological advances are bringing us closer to the realization of quantum computing. One of the main challenges in this area is to construct quantum systems that avoid decoherence as long as possible while manipulating the system. Another issue has to do with algorithms that serve as a foundation for security. If quantum computing systems are eventually constructed, they have the potential to undermine current encryption practices because many known intractable factoring problems would be turned into tractable ones.   Of more philosophical interest, the technological development of quantum computing has the potential to help us better understand the foundations of quantum physics.
Key works Much research was triggered by Shor 1994, who demonstrated how quantum algorithms could significantly speed up the factoring of large numbers into primes, and more generally exponentially speed up classical computation. Not everyone is so optimistic about the prospects of quantum speed ups, include Levin 2003
Introductions An introduction to the technical aspects of quantum computing and some of the philosophical issues can be found in Hagar & Cuffaro 2019.
Related categories

137 found
Order:
1 — 50 / 137
  1. On the Necessity of Entanglement for the Explanation of Quantum Speedup.Michael Cuffaro - manuscript
    Of the many and varied applications of quantum information theory, perhaps the most fascinating is the sub-field of quantum computation. In this sub-field, computational algorithms are designed which utilise the resources available in quantum systems in order to compute solutions to computational problems with, in some cases, exponentially fewer resources than any known classical algorithm. While the fact of quantum computational speedup is almost beyond doubt, the source of quantum speedup is still a matter of debate. In this paper I (...)
    Remove from this list   Direct download (5 more)  
     
    Export citation  
     
    Bookmark  
  2. To Balance a Pencil on its Tip: On the Passive Approach to Quantum Error Correction.Amit Hagar - manuscript
    Quantum computers are hypothetical quantum information processing (QIP) devices that allow one to store, manipulate, and extract information while harnessing quantum physics to solve various computational problems and do so putatively more efficiently than any known classical counterpart. Despite many ‘proofs of concept’ (Aharonov and Ben–Or 1996; Knill and Laflamme 1996; Knill et al. 1996; Knill et al. 1998) the key obstacle in realizing these powerful machines remains their scalability and susceptibility to noise: almost three decades after their conceptions, experimentalists (...)
    Remove from this list  
     
    Export citation  
     
    Bookmark   1 citation  
  3. On the (Im)Possibility of Scalable Quantum Computing.Andrew Knight - manuscript
    The potential for scalable quantum computing depends on the viability of fault tolerance and quantum error correction, by which the entropy of environmental noise is removed during a quantum computation to maintain the physical reversibility of the computer’s logical qubits. However, the theory underlying quantum error correction applies a linguistic double standard to the words “noise” and “measurement” by treating environmental interactions during a quantum computation as inherently reversible, and environmental interactions at the end of a quantum computation as irreversible (...)
    Remove from this list   Direct download  
     
    Export citation  
     
    Bookmark  
  4. Schroedinger's Register: Foundational Issues and Physical Realization.Stephen Pink & Stanley Martens - manuscript
    This work-in-progress paper consists of four points which relate to the foundations and physical realization of quantum computing. The first point is that the qubit cannot be taken as the basic unit for quantum computing, because not every superposition of bit-strings of length n can be factored into a string of n-qubits. The second point is that the “No-cloning” theorem does not apply to the copying of one quantum register into another register, because the mathematical representation of this copying is (...)
    Remove from this list   Direct download  
    Translate
     
     
    Export citation  
     
    Bookmark  
  5. Quantum Algorithms.D. Abrams & C. Williams - forthcoming - Complexity.
    Remove from this list  
     
    Export citation  
     
    Bookmark  
  6. Quantum Computation From a Quantum Logical Perspective.Jeffrey Bub - forthcoming - Philosophical Explorations.
    Remove from this list  
     
    Export citation  
     
    Bookmark   5 citations  
  7. What Have Google’s Random Quantum Circuit Simulation Experiments Demonstrated About Quantum Supremacy?Jack K. Horner & John Symons - forthcoming - In Hamid R. Arabnia, Leonidas Deligiannidis, Fernando G. Tinetti & Quoc-Nam Tran (eds.), Advances in Software Engineering, Education, and e-Learning. Cham, Switzerland: Springer Nature.
    Quantum computing is of high interest because it promises to perform at least some kinds of computations much faster than classical computers. Arute et al. 2019 (informally, “the Google Quantum Team”) report the results of experiments that purport to demonstrate “quantum supremacy” – the claim that the performance of some quantum computers is better than that of classical computers on some problems. Do these results close the debate over quantum supremacy? We argue that they do not. In the following, we (...)
    Remove from this list   Direct download  
     
    Export citation  
     
    Bookmark  
  8. Essay Review of Tanya and Jeffrey Bub’s Totally Random: Why Nobody Understands Quantum Mechanics: A Serious Comic on Entanglement: Princeton and Oxford: Princeton University Press (2018), ISBN: 9780691176956, 272 Pp., £18.99 / $22.95. [REVIEW]Michael E. Cuffaro & Emerson P. Doyle - 2021 - Foundations of Physics 51 (1):1-16.
    This is an extended essay review of Tanya and Jeffrey Bub’s Totally Random: Why Nobody Understands Quantum Mechanics: A serious comic on entanglement. We review the philosophical aspects of the book, provide suggestions for instructors on how to use the book in a class setting, and evaluate the authors’ artistic choices in the context of comics theory. Although Totally Random does not defend any particular interpretation of quantum mechanics, we find that, in its mode of presentation, Totally Random is a (...)
    Remove from this list   Direct download (3 more)  
    Translate
     
     
    Export citation  
     
    Bookmark  
  9. Correction to: Wild Laboratories of Climate Change: Plants, Phenology, and Global Warming, 1955–1980.R. Ashton Macfarlane - 2021 - Journal of the History of Biology 54 (2):341-342.
    Remove from this list   Direct download (2 more)  
    Translate
     
     
    Export citation  
     
    Bookmark  
  10. Magical Thinking: The Intersection of Quantum Entanglement and Self-Referential Recursion.Ilexa Yardley - 2021 - Https://Medium.Com/the-Circular-Theory/.
    The superposition of magical thinking, quantum entanglement, and self-referential recursion explains the relationship between human and machine intelligence (universal intelligence).
    Remove from this list   Direct download  
     
    Export citation  
     
    Bookmark  
  11. Universal Logic in Terms of Quantum Information.Vasil Penchev - 2020 - Metaphilosophy eJournal (Elsevier: SSRN) 12 (9):1-5.
    Any logic is represented as a certain collection of well-orderings admitting or not some algebraic structure such as a generalized lattice. Then universal logic should refer to the class of all subclasses of all well-orderings. One can construct a mapping between Hilbert space and the class of all logics. Thus there exists a correspondence between universal logic and the world if the latter is considered a collection of wave functions, as which the points in Hilbert space can be interpreted. The (...)
    Remove from this list   Direct download (4 more)  
     
    Export citation  
     
    Bookmark  
  12. A Quantum Computer in a 'Chinese Room'.Vasil Penchev - 2020 - Mechanical Engineering eJournal (Elsevier: SSRN) 3 (155):1-8.
    Pattern recognition is represented as the limit, to which an infinite Turing process converges. A Turing machine, in which the bits are substituted with qubits, is introduced. That quantum Turing machine can recognize two complementary patterns in any data. That ability of universal pattern recognition is interpreted as an intellect featuring any quantum computer. The property is valid only within a quantum computer: To utilize it, the observer should be sited inside it. Being outside it, the observer would obtain quite (...)
    Remove from this list   Direct download (4 more)  
     
    Export citation  
     
    Bookmark  
  13. Natural Argument by a Quantum Computer.Vasil Penchev - 2020 - Computing Methodology eJournal (Elsevier: SSRN) 3 (30):1-8.
    Natural argument is represented as the limit, to which an infinite Turing process converges. A Turing machine, in which the bits are substituted with qubits, is introduced. That quantum Turing machine can recognize two complementary natural arguments in any data. That ability of natural argument is interpreted as an intellect featuring any quantum computer. The property is valid only within a quantum computer: To utilize it, the observer should be sited inside it. Being outside it, the observer would obtain quite (...)
    Remove from this list   Direct download (4 more)  
     
    Export citation  
     
    Bookmark  
  14. Quantum Computer: Quantum Model and Reality.Vasil Penchev - 2020 - Epistemology eJournal (Elsevier: SSRN) 13 (17):1-7.
    Any computer can create a model of reality. The hypothesis that quantum computer can generate such a model designated as quantum, which coincides with the modeled reality, is discussed. Its reasons are the theorems about the absence of “hidden variables” in quantum mechanics. The quantum modeling requires the axiom of choice. The following conclusions are deduced from the hypothesis. A quantum model unlike a classical model can coincide with reality. Reality can be interpreted as a quantum computer. The physical processes (...)
    Remove from this list   Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  15. Two Strategies to Infinity: Completeness and Incompleteness. The Completeness of Quantum Mechanics.Vasil Penchev - 2020 - High Performance Computing eJournal 12 (11):1-8.
    Two strategies to infinity are equally relevant for it is as universal and thus complete as open and thus incomplete. Quantum mechanics is forced to introduce infinity implicitly by Hilbert space, on which is founded its formalism. One can demonstrate that essential properties of quantum information, entanglement, and quantum computer originate directly from infinity once it is involved in quantum mechanics. Thus, thеse phenomena can be elucidated as both complete and incomplete, after which choice is the border between them. A (...)
    Remove from this list   Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  16. In Algorithms We Trust: Magical Thinking, Superintelligent Ai and Quantum Computing.Nathan Schradle - 2020 - Zygon 55 (3):733-747.
  17. A Schematic Definition of Quantum Polynomial Time Computability.Tomoyuki Yamakami - 2020 - Journal of Symbolic Logic 85 (4):1546-1587.
    In the past four decades, the notion of quantum polynomial-time computability has been mathematically modeled by quantum Turing machines as well as quantum circuits. This paper seeks the third model, which is a quantum analogue of the schematic definition of recursive functions. For quantum functions mapping finite-dimensional Hilbert spaces to themselves, we present such a schematic definition, composed of a small set of initial quantum functions and a few construction rules that dictate how to build a new quantum function from (...)
    Remove from this list   Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  18. Would the Existence of CTCs Allow for Nonlocal Signaling?Lucas Dunlap - 2019 - Erkenntnis 84 (1):215-234.
    A recent paper from Brun et al. has argued that access to a closed timelike curve would allow for the possibility of perfectly distinguishing nonorthogonal quantum states. This result can be used to develop a protocol for instantaneous nonlocal signaling. Several commenters have argued that nonlocal signaling must fail in this and in similar cases, often citing consistency with relativity as the justification. I argue that this objection fails to rule out nonlocal signaling in the presence of a CTC. I (...)
    Remove from this list   Direct download (6 more)  
     
    Export citation  
     
    Bookmark  
  19. Quantum Computing.Amit Hagar & Michael Cuffaro - 2019 - Stanford Encyclopedia of Philosophy.
    Combining physics, mathematics and computer science, quantum computing and its sister discipline of quantum information have developed in the past few decades from visionary ideas to two of the most fascinating areas of quantum theory. General interest and excitement in quantum computing was initially triggered by Peter Shor (1994) who showed how a quantum algorithm could exponentially “speed-up” classical computation and factor large numbers into primes far more efficiently than any (known) classical algorithm. Shor’s algorithm was soon followed by several (...)
    Remove from this list   Direct download  
     
    Export citation  
     
    Bookmark   4 citations  
  20. On the Foundations of Computing.Giuseppe Primiero - 2019 - Oxford University Press.
    Computing, today more than ever before, is a multi-faceted discipline which collates several methodologies, areas of interest, and approaches: mathematics, engineering, programming, and applications. Given its enormous impact on everyday life, it is essential that its debated origins are understood, and that its different foundations are explained. On the Foundations of Computing offers a comprehensive and critical overview of the birth and evolution of computing, and it presents some of the most important technical results and philosophical problems of the discipline, (...)
    Remove from this list   Direct download (2 more)  
     
    Export citation  
     
    Bookmark   4 citations  
  21. Universality, Invariance, and the Foundations of Computational Complexity in the Light of the Quantum Computer.Michael Cuffaro - 2018 - In Sven Hansson (ed.), Technology and Mathematics: Philosophical and Historical Investigations. Springer. pp. 253-282.
    Computational complexity theory is a branch of computer science dedicated to classifying computational problems in terms of their difficulty. While computability theory tells us what we can compute in principle, complexity theory informs us regarding our practical limits. In this chapter I argue that the science of \emph{quantum computing} illuminates complexity theory by emphasising that its fundamental concepts are not model-independent, but that this does not, as some suggest, force us to radically revise the foundations of the theory. For model-independence (...)
    Remove from this list   Direct download (2 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  22. Reconsidering No-Go Theorems From a Practical Perspective.Michael E. Cuffaro - 2018 - British Journal for the Philosophy of Science 69 (3):633-655.
    I argue that our judgements regarding the locally causal models that are compatible with a given constraint implicitly depend, in part, on the context of inquiry. It follows from this that certain quantum no-go theorems, which are particularly striking in the traditional foundational context, have no force when the context switches to a discussion of the physical systems we are capable of building with the aim of classically reproducing quantum statistics. I close with a general discussion of the possible implications (...)
    Remove from this list   Direct download (10 more)  
     
    Export citation  
     
    Bookmark   5 citations  
  23. Physical Perspectives on Computation, Computational Perspectives on Physics.Michael E. Cuffaro & Samuel C. Fletcher (eds.) - 2018 - Cambridge University Press.
    Although computation and the science of physical systems would appear to be unrelated, there are a number of ways in which computational and physical concepts can be brought together in ways that illuminate both. This volume examines fundamental questions which connect scholars from both disciplines: is the universe a computer? Can a universal computing machine simulate every physical process? What is the source of the computational power of quantum computers? Are computational approaches to solving physical problems and paradoxes always fruitful? (...)
    Remove from this list   Direct download (3 more)  
     
    Export citation  
     
    Bookmark   5 citations  
  24. On the Significance of the Gottesman–Knill Theorem.Michael E. Cuffaro - 2017 - British Journal for the Philosophy of Science 68 (1):91-121.
    According to the Gottesman–Knill theorem, quantum algorithms that utilize only the operations belonging to a certain restricted set are efficiently simulable classically. Since some of the operations in this set generate entangled states, it is commonly concluded that entanglement is insufficient to enable quantum computers to outperform classical computers. I argue in this article that this conclusion is misleading. First, the statement of the theorem is, on reflection, already evident when we consider Bell’s and related inequalities in the context of (...)
    Remove from this list   Direct download (11 more)  
     
    Export citation  
     
    Bookmark   7 citations  
  25. Progress in Post-Quantum Theory.Jack Sarfatti - 2017 - AIP Conference Proceedings 1841 (1).
    David Bohm, in his "causal theory", made the correct Hegelian synthesis of Einstein's thesis that there is a "there" there, and Bohr's antithesis of "thinglessness" (Nick Herbert’s term). Einstein was a materialist and Bohr was an idealist. Bohm showed that quantum reality has both. This is “physical dualism” (my term). Physical dualism may be a low energy approximation to a deeper monism of cosmic consciousness called "the super-implicate order" (Bohm and Hiley’s term), “pregeometry” (Wheeler’s term), “substratum” (Dirac’s term), “funda-MENTAL space” (...)
    Remove from this list   Direct download  
     
    Export citation  
     
    Bookmark  
  26. Ed Fredkin and the Physics of Information - An Inside Story of an Outsider Scientist.Amit Hagar - 2016 - Information and Culture 51 (3):419-443.
    This article tells the story of Ed Fredkin, a pilot, programmer, engineer, hardware designer and entrepreneur, whose work inside and outside academia has influenced major developments in computer science and in the foundations of theoretical physics for the past fifty years.
    Remove from this list  
     
    Export citation  
     
    Bookmark   1 citation  
  27. How-Possibly Explanations in (Quantum) Computer Science.Michael E. Cuffaro - 2015 - Philosophy of Science 82 (5):737-748.
    A primary goal of quantum computer science is to find an explanation for the fact that quantum computers are more powerful than classical computers. In this paper I argue that to answer this question is to compare algorithmic processes of various kinds and to describe the possibility spaces associated with these processes. By doing this, we explain how it is possible for one process to outperform its rival. Further, in this and similar examples little is gained in subsequently asking a (...)
    Remove from this list   Direct download (8 more)  
     
    Export citation  
     
    Bookmark   7 citations  
  28. Counting Steps: A Finitist Interpretation of Objective Probability in Physics.Amit Hagar & Giuseppe Sergioli - 2015 - Epistemologia 37 (2):262-275.
    We propose a new interpretation of objective deterministic chances in statistical physics based on physical computational complexity. This notion applies to a single physical system (be it an experimental set--up in the lab, or a subsystem of the universe), and quantifies (1) the difficulty to realize a physical state given another, (2) the 'distance' (in terms of physical resources) from a physical state to another, and (3) the size of the set of time--complexity functions that are compatible with the physical (...)
    Remove from this list   Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  29. A Formal Model of Metaphor in Frame Semantics.Vasil Penchev - 2015 - In Proceedings of the 41st Annual Convention of the Society for the Study of Artificial Intelligence and the Simulation of Behaviour. New York: Curran Associates, Inc.. pp. 187-194.
    A formal model of metaphor is introduced. It models metaphor, first, as an interaction of “frames” according to the frame semantics, and then, as a wave function in Hilbert space. The practical way for a probability distribution and a corresponding wave function to be assigned to a given metaphor in a given language is considered. A series of formal definitions is deduced from this for: “representation”, “reality”, “language”, “ontology”, etc. All are based on Hilbert space. A few statements about a (...)
    Remove from this list   Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  30. Info-Computational Constructivism and Quantum Field Theory.G. Basti - 2014 - Constructivist Foundations 9 (2):242-244.
    Open peer commentary on the article “Info-computational Constructivism and Cognition” by Gordana Dodig-Crnkovic. Upshot: Dodig-Crnkovic’s “info-computational constructivism” (IC), as an essential part of a constructivist approach, needs integration with the logical, mathematical and physical evidence coming from quantum field theory (QFT) as the fundamental physics of the emergence of “complex systems” in all realms of natural sciences.
    Remove from this list   Direct download  
     
    Export citation  
     
    Bookmark  
  31. On the Possibility of Quantum Informational Structural Realism.Terrell Ward Bynum - 2014 - Minds and Machines 24 (1):123-139.
    In The Philosophy of Information, Luciano Floridi presents an ontological theory of Being qua Being, which he calls “Informational Structural Realism”, a theory which applies, he says, to every possible world. He identifies primordial information (“dedomena”) as the foundation of any structure in any possible world. The present essay examines Floridi’s defense of that theory, as well as his refutation of “Digital Ontology” (which some people might confuse with his own). Then, using Floridi’s ontology as a starting point, the present (...)
    Remove from this list   Direct download (4 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  32. Review Of: Christopher G. Timpson, Quantum Information Theory and the Foundations of Quantum Mechanics. [REVIEW]Michael E. Cuffaro - 2014 - Philosophy of Science 81 (4):681-684,.
  33. Preface Special Issue Foundations of Physics.Dennis Dieks, Décio Krause & Christian de Ronde - 2014 - Foundations of Physics 44 (12):1245-1245.
    The foundations of quantum mechanics are attracting new and significant interest in the scientific community due to the recent striking experimental and technical progress in the fields of quantum computation, quantum teleportation and quantum information processing. However, at a more fundamental level the understanding and manipulation of these novel phenomena require not only new laboratory techniques but also new understanding, development and interpretation of the formalism of quantum mechanics itself, a mathematical structure whose connection to what happens in physical reality (...)
    Remove from this list   Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  34. Quantum Computing’s Classical Problem, Classical Computing’s Quantum Problem.Rodney Van Meter - 2014 - Foundations of Physics 44 (8):819-828.
    Tasked with the challenge to build better and better computers, quantum computing and classical computing face the same conundrum: the success of classical computing systems. Small quantum computing systems have been demonstrated, and intermediate-scale systems are on the horizon, capable of calculating numeric results or simulating physical systems far beyond what humans can do by hand. However, to be commercially viable, they must surpass what our wildly successful, highly advanced classical computers can already do. At the same time, those classical (...)
    Remove from this list   Direct download (4 more)  
     
    Export citation  
     
    Bookmark  
  35. Quantum Computing Since Democritus.Scott Aaronson - 2013 - Cambridge University Press.
    Takes students and researchers on a tour through some of the deepest ideas of maths, computer science and physics.
    Remove from this list   Direct download  
     
    Export citation  
     
    Bookmark   11 citations  
  36. Is the Mind a Quantum Computer?Claudio Calosi - 2013 - Epistemologia 36 (2):194-206.
  37. On the Physical Explanation for Quantum Computational Speedup.Michael Cuffaro - 2013 - Dissertation, The University of Western Ontario
    The aim of this dissertation is to clarify the debate over the explanation of quantum speedup and to submit, for the reader's consideration, a tentative resolution to it. In particular, I argue, in this dissertation, that the physical explanation for quantum speedup is precisely the fact that the phenomenon of quantum entanglement enables a quantum computer to fully exploit the representational capacity of Hilbert space. This is impossible for classical systems, joint states of which must always be representable as product (...)
    Remove from this list   Direct download (6 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  38. The Toffoli-Hadamard Gate System: An Algebraic Approach.Maria Luisa Dalla Chiara, Antonio Ledda, Giuseppe Sergioli & Roberto Giuntini - 2013 - Journal of Philosophical Logic 42 (3):467-481.
    Shi and Aharonov have shown that the Toffoli gate and the Hadamard gate give rise to an approximately universal set of quantum computational gates. The basic algebraic properties of this system have been studied in Dalla Chiara et al. (Foundations of Physics 39(6):559–572, 2009), where we have introduced the notion of Shi-Aharonov quantum computational structure. In this paper we propose an algebraic abstraction from the Hilbert-space quantum computational structures, by introducing the notion of Toffoli-Hadamard algebra. From an intuitive point of (...)
    Remove from this list   Direct download (5 more)  
     
    Export citation  
     
    Bookmark  
  39. Editors' Introduction: The Third Life of Quantum Logic: Quantum Logic Inspired by Quantum Computing. [REVIEW]J. Michael Dunn, Lawrence S. Moss & Zhenghan Wang - 2013 - Journal of Philosophical Logic 42 (3):443-459.
  40. Quantum Probability and Cognitive Modeling: Some Cautions and a Promising Direction in Modeling Physics Learning.Donald R. Franceschetti & Elizabeth Gire - 2013 - Behavioral and Brain Sciences 36 (3):284-285.
    Quantum probability theory offers a viable alternative to classical probability, although there are some ambiguities inherent in transferring the quantum formalism to a less determined realm. A number of physicists are now looking at the applicability of quantum ideas to the assessment of physics learning, an area particularly suited to quantum probability ideas.
    Remove from this list   Direct download (4 more)  
     
    Export citation  
     
    Bookmark  
  41. Does Quantum Uncertainty Have a Place in Everyday Applied Statistics?Andrew Gelman & Michael Betancourt - 2013 - Behavioral and Brain Sciences 36 (3):285-285.
  42. Quantum Principles in Psychology: The Debate, the Evidence, and the Future.Emmanuel M. Pothos & Jerome R. Busemeyer - 2013 - Behavioral and Brain Sciences 36 (3):310-327.
    The attempt to employ quantum principles for modeling cognition has enabled the introduction of several new concepts in psychology, such as the uncertainty principle, incompatibility, entanglement, and superposition. For many commentators, this is an exciting opportunity to question existing formal frameworks (notably classical probability theory) and explore what is to be gained by employing these novel conceptual tools. This is not to say that major empirical challenges are not there. For example, can we definitely prove the necessity for quantum, as (...)
    Remove from this list   Direct download (4 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  43. Perfect State Distinguishability and Computational Speedups with Postselected Closed Timelike Curves.Todd A. Brun & Mark M. Wilde - 2012 - Foundations of Physics 42 (3):341-361.
    Bennett and Schumacher’s postselected quantum teleportation is a model of closed timelike curves (CTCs) that leads to results physically different from Deutsch’s model. We show that even a single qubit passing through a postselected CTC (P-CTC) is sufficient to do any postselected quantum measurement with certainty, and we discuss an important difference between “Deutschian” CTCs (D-CTCs) and P-CTCs in which the future existence of a P-CTC might affect the present outcome of an experiment. Then, based on a suggestion of Bennett (...)
    Remove from this list   Direct download (5 more)  
     
    Export citation  
     
    Bookmark  
  44. Quantum Africa 2010: Theoretical and Experimental Foundations of Recent Quantum Technology, Umhlanga, South Africa, 20-23 September 2010. [REVIEW]Erwin Brüning, Thomas Konrad & F. Petruccione (eds.) - 2012 - American Institute of Physics.
    The conference Quantum Africa 2010 addressed recent advances, both theoretical and experimental, in the rapidly progressing field of quantum technologies. In particular progress in the foundations of quantum cryptography, quantum computing as well as quantum metrology was reported.
    Remove from this list   Direct download  
     
    Export citation  
     
    Bookmark  
  45. Information Theoretic Representations of Qubit Channels.Tanner Crowder & Keye Martin - 2012 - Foundations of Physics 42 (7):976-983.
    A set of qubit channels has a classical representation when it is isomorphic to the convex closure of a group of classical channels. From Crowder and Martin (Proceedings of Quantum Physics and Logic, Electronic Notes in Theoretical Computer Science, 2009), we know that up to isomorphism there are five such sets, each corresponding to either a subgroup of the alternating group on four letters, or a subgroup of the symmetric group on three letters. In this paper, we show that the (...)
    Remove from this list   Direct download (4 more)  
     
    Export citation  
     
    Bookmark  
  46. Many Worlds, the Cluster-State Quantum Computer, and the Problem of the Preferred Basis.Michael E. Cuffaro - 2012 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 43 (1):35-42.
    I argue that the many worlds explanation of quantum computation is not licensed by, and in fact is conceptually inferior to, the many worlds interpretation of quantum mechanics from which it is derived. I argue that the many worlds explanation of quantum computation is incompatible with the recently developed cluster state model of quantum computation. Based on these considerations I conclude that we should reject the many worlds explanation of quantum computation.
    Remove from this list   Direct download (12 more)  
     
    Export citation  
     
    Bookmark   6 citations  
  47. Weak Measurement and Weak Information.Boaz Tamir & Sergei Masis - 2012 - Foundations of Physics 42 (4):531-543.
    Weak measurement devices resemble band pass filters: they strengthen average values in the state space or equivalently filter out some ‘frequencies’ from the conjugate Fourier transformed vector space. We thereby adjust a principle of classical communication theory for the use in quantum computation. We discuss some of the computational benefits and limitations of such an approach, including complexity analysis, some simple examples and a realistic not-so-weak approach.
    Remove from this list   Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  48. Addressing the Clumsiness Loophole in a Leggett-Garg Test of Macrorealism.Mark M. Wilde & Ari Mizel - 2012 - Foundations of Physics 42 (2):256-265.
    The rise of quantum information theory has lent new relevance to experimental tests for non-classicality, particularly in controversial cases such as adiabatic quantum computing superconducting circuits. The Leggett-Garg inequality is a “Bell inequality in time” designed to indicate whether a single quantum system behaves in a macrorealistic fashion. Unfortunately, a violation of the inequality can only show that the system is either (i) non-macrorealistic or (ii) macrorealistic but subjected to a measurement technique that happens to disturb the system. The “clumsiness” (...)
    Remove from this list   Direct download (5 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  49. Surmounting the Cartesian Cut Through Philosophy, Physics, Logic, Cybernetics, and Geometry: Self-Reference, Torsion, the Klein Bottle, the Time Operator, Multivalued Logics and Quantum Mechanics. [REVIEW]Diego L. Rapoport - 2011 - Foundations of Physics 41 (1):33-76.
    In this transdisciplinary article which stems from philosophical considerations (that depart from phenomenology—after Merleau-Ponty, Heidegger and Rosen—and Hegelian dialectics), we develop a conception based on topological (the Moebius surface and the Klein bottle) and geometrical considerations (based on torsion and non-orientability of manifolds), and multivalued logics which we develop into a unified world conception that surmounts the Cartesian cut and Aristotelian logic. The role of torsion appears in a self-referential construction of space and time, which will be further related to (...)
    Remove from this list   Direct download (4 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  50. Quantum Retrocausation: Theory and Experiment: San Diego, California, Usa, 13-14 June 2011.Daniel P. Sheehan (ed.) - 2011 - American Institute of Physics.
    This conference proceedings would be of interest to theoretical and experimental physicists in the areas of foundations of physics, nature of time, foundations of quantum mechanics, quantum measurement, quantum computation. Philosophers of science and physics. Retrocausation, the process whereby the future affects its past, is central to the modern movement to understand the fundamental physical nature of time. This conference volume presents the most recent theoretical and experimental results at the forefront of the nascent field of physical chronology.
    Remove from this list  
     
    Export citation  
     
    Bookmark  
1 — 50 / 137