Switch to: References

Add citations

You must login to add citations.
  1. Fermi’s Golden Rule and the Second Law of Thermodynamics.D. Braak & J. Mannhart - 2020 - Foundations of Physics 50 (11):1509-1540.
    We present a Gedankenexperiment that leads to a violation of detailed balance if quantum mechanical transition probabilities are treated in the usual way by applying Fermi’s “golden rule”. This Gedankenexperiment introduces a collection of two-level systems that absorb and emit radiation randomly through non-reciprocal coupling to a waveguide, as realized in specific chiral quantum optical systems. The non-reciprocal coupling is modeled by a hermitean Hamiltonian and is compatible with the time-reversal invariance of unitary quantum dynamics. Surprisingly, the combination of non-reciprocity (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  • The Bit (and Three Other Abstractions) Define the Borderline Between Hardware and Software.Russ Abbott - 2019 - Minds and Machines 29 (2):239-285.
    Modern computing is generally taken to consist primarily of symbol manipulation. But symbols are abstract, and computers are physical. How can a physical device manipulate abstract symbols? Neither Church nor Turing considered this question. My answer is that the bit, as a hardware-implemented abstract data type, serves as a bridge between materiality and abstraction. Computing also relies on three other primitive—but more straightforward—abstractions: Sequentiality, State, and Transition. These physically-implemented abstractions define the borderline between hardware and software and between physicality and (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  • Putting Probabilities First. How Hilbert Space Generates and Constrains Them.Michael Janas, Michael Cuffaro & Michel Janssen - manuscript
    We use Bub's (2016) correlation arrays and Pitowksy's (1989b) correlation polytopes to analyze an experimental setup due to Mermin (1981) for measurements on the singlet state of a pair of spin-12 particles. The class of correlations allowed by quantum mechanics in this setup is represented by an elliptope inscribed in a non-signaling cube. The class of correlations allowed by local hidden-variable theories is represented by a tetrahedron inscribed in this elliptope. We extend this analysis to pairs of particles of arbitrary (...)
    Direct download  
     
    Export citation  
     
    Bookmark  
  • Quantum Computing.Amit Hagar & Michael Cuffaro - 2019 - Stanford Encyclopedia of Philosophy.
    Combining physics, mathematics and computer science, quantum computing and its sister discipline of quantum information have developed in the past few decades from visionary ideas to two of the most fascinating areas of quantum theory. General interest and excitement in quantum computing was initially triggered by Peter Shor (1994) who showed how a quantum algorithm could exponentially “speed-up” classical computation and factor large numbers into primes far more efficiently than any (known) classical algorithm. Shor’s algorithm was soon followed by several (...)
    Direct download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Computation in Physical Systems.Gualtiero Piccinini - 2010 - Stanford Encyclopedia of Philosophy.