Switch to: References

Citations of:

Universality, Invariance, and the Foundations of Computational Complexity in the light of the Quantum Computer

In Hansson Sven Ove (ed.), Technology and Mathematics: Philosophical and Historical Investigations. Cham, Switzerland: Springer Verlag. pp. 253-282 (2018)

Add citations

You must login to add citations.
  1. Computational Complexity Theory and the Philosophy of Mathematics†.Walter Dean - 2019 - Philosophia Mathematica 27 (3):381-439.
    Computational complexity theory is a subfield of computer science originating in computability theory and the study of algorithms for solving practical mathematical problems. Amongst its aims is classifying problems by their degree of difficulty — i.e., how hard they are to solve computationally. This paper highlights the significance of complexity theory relative to questions traditionally asked by philosophers of mathematics while also attempting to isolate some new ones — e.g., about the notion of feasibility in mathematics, the $\mathbf{P} \neq \mathbf{NP}$ (...)
    No categories
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  • Technology and Mathematics.Sven Ove Hansson - 2020 - Philosophy and Technology 33 (1):117-139.
    In spite of their practical importance, the connections between technology and mathematics have not received much scholarly attention. This article begins by outlining how the technology–mathematics relationship has developed, from the use of simple aide-mémoires for counting and arithmetic, via the use of mathematics in weaving, building and other trades, and the introduction of calculus to solve technological problems, to the modern use of computers to solve both technological and mathematical problems. Three important philosophical issues emerge from this historical résumé: (...)
    No categories
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  • Quantum computing.Amit Hagar & Michael Cuffaro - 2019 - Stanford Encyclopedia of Philosophy.
    Combining physics, mathematics and computer science, quantum computing and its sister discipline of quantum information have developed in the past few decades from visionary ideas to two of the most fascinating areas of quantum theory. General interest and excitement in quantum computing was initially triggered by Peter Shor (1994) who showed how a quantum algorithm could exponentially “speed-up” classical computation and factor large numbers into primes far more efficiently than any (known) classical algorithm. Shor’s algorithm was soon followed by several (...)
    Direct download  
     
    Export citation  
     
    Bookmark   6 citations