Results for 'biomedical terminology'

991 found
Order:
  1. Biomedical Terminologies and Ontologies: Enabling Biomedical Semantic Interoperability and Standards in Europe.Bernard de Bono, Mathias Brochhausen, Sybo Dijkstra, Dipak Kalra, Stephan Keifer & Barry Smith - 2009 - In Bernard de Bono, Mathias Brochhausen, Sybo Dijkstra, Dipak Kalra, Stephan Keifer & Barry Smith (eds.), European Large-Scale Action on Electronic Health.
    In the management of biomedical data, vocabularies such as ontologies and terminologies (O/Ts) are used for (i) domain knowledge representation and (ii) interoperability. The knowledge representation role supports the automated reasoning on, and analysis of, data annotated with O/Ts. At an interoperability level, the use of a communal vocabulary standard for a particular domain is essential for large data repositories and information management systems to communicate consistently with one other. Consequently, the interoperability benefit of selecting a particular O/T as (...)
    No categories
    Direct download  
     
    Export citation  
     
    Bookmark  
  2. A Unified Framework for Biomedical Terminologies and Ontologies.Werner Ceusters & Barry Smith - 2010 - Studies in Health Technology and Informatics 160:1050-1054.
    The goal of the OBO (Open Biomedical Ontologies) Foundry initiative is to create and maintain an evolving collection of non-overlapping interoperable ontologies that will offer unambiguous representations of the types of entities in biological and biomedical reality. These ontologies are designed to serve non-redundant annotation of data and scientific text. To achieve these ends, the Foundry imposes strict requirements upon the ontologies eligible for inclusion. While these requirements are not met by most existing biomedical terminologies, the latter (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   6 citations  
  3. New desiderata for biomedical terminologies.Barry Smith - 2008 - In Katherine Munn & Barry Smith (eds.), Applied Ontology: An Introduction. Ontos. pp. 83-109.
    It is only by fixing on agreed meanings of terms in biomedical terminologies that we will be in a position to achieve that accumulation and integration of knowledge that is indispensable to progress at the frontiers of biomedicine. Standardly, the goal of fixing meanings is seen as being realized through the alignment of terms on what are called ‘concepts’. Part I addresses three versions of the concept-based approach – by Cimino, by Wüster, and by Campbell and associates – and (...)
    No categories
    Direct download  
     
    Export citation  
     
    Bookmark   4 citations  
  4. Investigating Subsumption in SNOMED CT: An Exploration into Large Description Logic-Based Biomedical Terminologies.Olivier Bodenreider, Barry Smith, Anand Kumar & Anita Burgun - 2007 - Artificial Intelligence in Medicine 39 (3):183-195.
    Formalisms based on one or other flavor of Description Logic (DL) are sometimes put forward as helping to ensure that terminologies and controlled vocabularies comply with sound ontological principles. The objective of this paper is to study the degree to which one DL-based biomedical terminology (SNOMED CT) does indeed comply with such principles. We defined seven ontological principles (for example: each class must have at least one parent, each class must differ from its parent) and examined the properties (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   4 citations  
  5. From concepts to clinical reality: An essay on the benchmarking of biomedical terminologies.Barry Smith - 2006 - Journal of Biomedical Informatics 39 (3):288-298.
    It is only by fixing on agreed meanings of terms in biomedical terminologies that we will be in a position to achieve that accumulation and integration of knowledge that is indispensable to progress at the frontiers of biomedicine. Standardly, the goal of fixing meanings is seen as being realized through the alignment of terms on what are called ‘concepts’. Part I addresses three versions of the concept-based approach – by Cimino, by Wüster, and by Campbell and associates – and (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   12 citations  
  6. An ontology-based methodology for the migration of biomedical terminologies to electronic health records.Barry Smith & Werner Ceusters - 2005 - In Smith Barry & Ceusters Werner (eds.), Proceedings of AMIA Symposium 2005, Washington DC,. AMIA. pp. 704-708.
    Biomedical terminologies are focused on what is general, Electronic Health Records (EHRs) on what is particular, and it is commonly assumed that the step from the one to the other is unproblematic. We argue that this is not so, and that, if the EHR of the future is to fulfill its promise, then the foundations of both EHR architectures and biomedical terminologies need to be reconceived. We accordingly describe a new framework for the treatment of both generals and (...)
    Direct download  
     
    Export citation  
     
    Bookmark   1 citation  
  7.  27
    Science in touch: Functions of biomedical terminology[REVIEW]C. Hauskeller - 2005 - Biology and Philosophy 20 (4):815-835.
    Scientists’ language use in communication to or with the public has often been criticised as merely strategic. This article explores three terms employed in stem cell and genomic research, to support the hypothesis that biomedical terminology is heavily influenced by different legal, cultural, and ethical backgrounds in different societies. The word ‘pre-embryo’ has never been part of any acceptable official rhetoric in Germany but was important in Britain. The ‘toti-’, ‘pluri-’, or ‘multipotency’ of specific stem cells became a (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   10 citations  
  8.  5
    Chapter 4: New Desiderata for Biomedical Terminologies.Barry Smith - 2008 - In Katherine Munn & Barry Smith (eds.), Applied Ontology: An Introduction. Ontos. pp. 83-108.
    No categories
    Direct download  
     
    Export citation  
     
    Bookmark  
  9. Towards a Reference Terminology for Ontology Research and Development in the Biomedical Domain.Barry Smith, Waclaw Kusnierczyk, Daniel Schober, & Werner Ceusters - 2006 - In Barry Smith, Waclaw Kusnierczyk, Schober & Werner Ceusters (eds.), Proceedings of KR-MED, CEUR, vol. 222. pp. 57-65.
    Ontology is a burgeoning field, involving researchers from the computer science, philosophy, data and software engineering, logic, linguistics, and terminology domains. Many ontology-related terms with precise meanings in one of these domains have different meanings in others. Our purpose here is to initiate a path towards disambiguation of such terms. We draw primarily on the literature of biomedical informatics, not least because the problems caused by unclear or ambiguous use of terms have been there most thoroughly addressed. We (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   30 citations  
  10. Ontology and medical terminology: Why description logics are not enough.Werner Ceusters, Barry Smith & Jim Flanagan - 2003 - In Proceedings of the Conference: Towards an Electronic Patient Record (TEPR 2003). Boston, MA: Medical Records Institute.
    Ontology is currently perceived as the solution of first resort for all problems related to biomedical terminology, and the use of description logics is seen as a minimal requirement on adequate ontology-based systems. Contrary to common conceptions, however, description logics alone are not able to prevent incorrect representations; this is because they do not come with a theory indicating what is computed by using them, just as classical arithmetic does not tell us anything about the entities that are (...)
    No categories
    Direct download  
     
    Export citation  
     
    Bookmark   12 citations  
  11. A terminological and ontological analysis of the NCI thesaurus.Werner Ceusters, Barry Smith & Louis Goldberg - 2005 - Methods of Information in Medicine 44 (4):498-507.
    We performed a qualitative analysis of the Thesaurus in order to assess its conformity with principles of good practice in terminology and ontology design. We used both the on-line browsable version of the Thesaurus and its OWL-representation (version 04.08b, released on August 2, 2004), measuring each in light of the requirements put forward in relevant ISO terminology standards and in light of ontological principles advanced in the recent literature. Version 04.08b of the NCI Thesaurus suffers from the same (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   21 citations  
  12. Putting Biomedical Ontologies to Work.Barry Smith & Mathias Brochhausen - 2010 - Methods of Information in Medicine 49 (2):135-40.
    Biomedical ontologies exist to serve integration of clinical and experimental data, and it is critical to their success that they be put to widespread use in the annotation of data. How, then, can ontologies achieve the sort of user-friendliness, reliability, cost-effectiveness, and breadth of coverage that is necessary to ensure extensive usage? Methods: Our focus here is on two different sets of answers to these questions that have been proposed, on the one hand in medicine, by the SNOMED CT (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   5 citations  
  13. A strategy for improving and integrating biomedical ontologies.Cornelius Rosse, Anand Kumar, Jose L. V. Mejino, Daniel L. Cook, Landon T. Detwiler & Barry Smith - 2005 - In Proceedings of the Annual Symposium of the American Medical Informatics Association. AMIA. pp. 639-643.
    The integration of biomedical terminologies is indispensable to the process of information integration. When terminologies are linked merely through the alignment of their leaf terms, however, differences in context and ontological structure are ignored. Making use of the SNAP and SPAN ontologies, we show how three reference domain ontologies can be integrated at a higher level, through what we shall call the OBR framework (for: Ontology of Biomedical Reality). OBR is designed to facilitate inference across the boundaries of (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   7 citations  
  14. Biomedical Ontologies.Barry Smith - 2022 - In Peter L. Elkin (ed.), Terminology, Ontology and Their Implementations: Teaching Guide and Notes. Springer. pp. 125-169.
    We begin at the beginning, with an outline of Aristotle’s views on ontology and with a discussion of the influence of these views on Linnaeus. We move from there to consider the data standardization initiatives launched in the 19th century, and then turn to investigate how the idea of computational ontologies developed in the AI and knowledge representation communities in the closing decades of the 20th century. We show how aspects of this idea, particularly those relating to the use of (...)
    Direct download  
     
    Export citation  
     
    Bookmark   2 citations  
  15. Biomedical ontology alignment: An approach based on representation learning.Prodromos Kolyvakis, Alexandros Kalousis, Barry Smith & Dimitris Kiritsis - 2018 - Journal of Biomedical Semantics 9 (21).
    While representation learning techniques have shown great promise in application to a number of different NLP tasks, they have had little impact on the problem of ontology matching. Unlike past work that has focused on feature engineering, we present a novel representation learning approach that is tailored to the ontology matching task. Our approach is based on embedding ontological terms in a high-dimensional Euclidean space. This embedding is derived on the basis of a novel phrase retrofitting strategy through which semantic (...)
    Direct download  
     
    Export citation  
     
    Bookmark  
  16. Biomedical informatics and granularity.Anand Kumar & Barry Smith - 2004 - Comparative and Functional Genomics 5 (6-7):501-508.
    An explicit formal-ontological representation of entities existing at multiple levels of granularity is an urgent requirement for biomedical information processing. We discuss some fundamental principles which can form a basis for such a representation. We also comment on some of the implicit treatments of granularity in currently available ontologies and terminologies (GO, FMA, SNOMED CT).
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   6 citations  
  17. The Ontology-Epistemology Divide: A Case Study in Medical Terminology.OIivier Bodenreider, Barry Smith & Anita Burgun - 2004 - In Achille Varzi & Laure Vieu (eds.), Formal Ontology in Information Systems. Proceedings of the Third International Conference (FOIS 2004). IOS Press.
    Medical terminology collects and organizes the many different kinds of terms employed in the biomedical domain both by practitioners and also in the course of biomedical research. In addition to serving as labels for biomedical classes, these names reflect the organizational principles of biomedical vocabularies and ontologies. Some names represent invariant features (classes, universals) of biomedical reality (i.e., they are a matter for ontology). Other names, however, convey also how this reality is perceived, measured, (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   15 citations  
  18. The National Center for Biomedical Ontology.Mark A. Musen, Natalya F. Noy, Nigam H. Shah, Patricia L. Whetzel, Christopher G. Chute, Margaret-Anne Story & Barry Smith - 2012 - Journal of the American Medical Informatics Association 19 (2):190-195.
    The National Center for Biomedical Ontology is now in its seventh year. The goals of this National Center for Biomedical Computing are to: create and maintain a repository of biomedical ontologies and terminologies; build tools and web services to enable the use of ontologies and terminologies in clinical and translational research; educate their trainees and the scientific community broadly about biomedical ontology and ontology-based technology and best practices; and collaborate with a variety of groups who develop (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  19. The Role of Foundational Relations in the Alignment of Biomedical Ontologies.Barry Smith & Cornelius Rosse - 2004 - In M. Fieschi, E. Coiera & Y.-C. J. Li (eds.), Medinfo. IOS Press. pp. 444-448.
    The Foundational Model of Anatomy (FMA) symbolically represents the structural organization of the human body from the macromolecular to the macroscopic levels, with the goal of providing a robust and consistent scheme for classifying anatomical entities that is designed to serve as a reference ontology in biomedical informatics. Here we articulate the need for formally clarifying the is-a and part-of relations in the FMA and similar ontology and terminology systems. We diagnose certain characteristic errors in the treatment of (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   27 citations  
  20. Investigating subsumption in DL-based terminologies: A case study in SNOMED CT.Olivier Bodenreider, Barry Smith, Anand Kumar & Anita Burgun - 2004 - In Olivier Bodenreider, Barry Smith, Anand Kumar & Anita Burgun (eds.), Proceedings of the First International Workshop on Formal Biomedical Knowledge Representation (KR-MED 2004). pp. 12-20.
    Formalisms such as description logics (DL) are sometimes expected to help terminologies ensure compliance with sound ontological principles. The objective of this paper is to study the degree to which one DL-based biomedical terminology (SNOMED CT) complies with such principles. We defined seven ontological principles (for example: each class must have at least one parent, each class must differ from its parent) and examined the properties of SNOMED CT classes with respect to these principles. Our major results are: (...)
    No categories
    Direct download  
     
    Export citation  
     
    Bookmark   10 citations  
  21.  19
    Formal ontologies in biomedical knowledge representation.S. Schulz & L. Jansen - 2013 - In M.-C. Jaulent, C. U. Lehmann & B. Séroussi (eds.), Yearbook of Medical Informatics 8. pp. 132-146.
    Objectives: Medical decision support and other intelligent applications in the life sciences depend on increasing amounts of digital information. Knowledge bases as well as formal ontologies are being used to organize biomedical knowledge and data. However, these two kinds of artefacts are not always clearly distinguished. Whereas the popular RDF(S) standard provides an intuitive triple-based representation, it is semantically weak. Description logics based ontology languages like OWL-DL carry a clear-cut semantics, but they are computationally expensive, and they are often (...)
    Direct download  
     
    Export citation  
     
    Bookmark  
  22. The Environment Ontology: Contextualising biological and biomedical entities.Pier Luigi Buttigieg, Norman Morrison, Barry Smith, Christopher J. Mungall & Suzanna E. Lewis - 2013 - Journal of Biomedical Semantics 4 (43):1-9.
    As biological and biomedical research increasingly reference the environmental context of the biological entities under study, the need for formalisation and standardisation of environment descriptors is growing. The Environment Ontology (ENVO) is a community-led, open project which seeks to provide an ontology for specifying a wide range of environments relevant to multiple life science disciplines and, through an open participation model, to accommodate the terminological requirements of all those needing to annotate data using ontology classes. This paper summarises ENVO’s (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   5 citations  
  23. Ontology as the core discipline of biomedical informatics: Legacies of the past and recommendations for the future direction of research.Barry Smith & Werner Ceusters - 2007 - In Gordana Dodig Crnkovic & Susan Stuart (eds.), Computation, Information, Cognition: The Nexus and the Liminal. Cambridge Scholars Publishing. pp. 104-122.
    The automatic integration of rapidly expanding information resources in the life sciences is one of the most challenging goals facing biomedical research today. Controlled vocabularies, terminologies, and coding systems play an important role in realizing this goal, by making it possible to draw together information from heterogeneous sources – for example pertaining to genes and proteins, drugs and diseases – secure in the knowledge that the same terms will also represent the same entities on all occasions of use. In (...)
    Direct download  
     
    Export citation  
     
    Bookmark   6 citations  
  24. Negative findings in electronic health records and biomedical ontologies: a realist approach.Werner Ceusters, Peter Elkin & Barry Smith - 2007 - International Journal of Medical Informatics 76 (3):S326-S333.
    PURPOSE—A substantial fraction of the observations made by clinicians and entered into patient records are expressed by means of negation or by using terms which contain negative qualifiers (as in “absence of pulse” or “surgical procedure not performed”). This seems at first sight to present problems for ontologies, terminologies and data repositories that adhere to a realist view and thus reject any reference to putative non-existing entities. Basic Formal Ontology (BFO) and Referent Tracking (RT) are examples of such paradigms. The (...)
    Direct download  
     
    Export citation  
     
    Bookmark   11 citations  
  25. A realism-based approach to the evolution of biomedical ontologies.Barry Smith - 2006 - In Proceedings of the Annual AMIA Symposium. Washington, DC: American Medical Informatics Association. pp. 121-125.
    We present a novel methodology for calculating the improvements obtained in successive versions of biomedical ontologies. The theory takes into account changes both in reality itself and in our understanding of this reality. The successful application of the theory rests on the willingness of ontology authors to document changes they make by following a number of simple rules. The theory provides a pathway by which ontology authoring can become a science rather than an art, following principles analogous to those (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   17 citations  
  26.  46
    Creation and Use of Transgenic Animals in Pharmaceutical and Biomedical Research.Catherine M. Klein - 2007 - Journal of Philosophical Research 32 (9999):7-26.
    The creation of transgenic animals has application in the following areas of pharmaceutical and biomedical research: the production of biopharmaceuticals for human use; the production of organs for xenotransplantation; and the generation of animal models for human genetic diseases. Nuclear transfer technology offers a more precise and efficient way of performing genetic modification and creating transgenic animals than the more traditional method of pronuclear microinjection. This paper will review nuclear transfer as ameans of producing transgenic animals; introduce advantages nuclear (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark  
  27. Ontological theory for ontological engineering: Biomedical systems information integration.James M. Fielding, Jonathan Simon, Werner Ceusters & Barry Smith - 2004 - In Fielding James M., Simon Jonathan, Ceusters Werner & Smith Barry (eds.), Proceedings of the Ninth International Conference on the Principles of Knowledge Representation and Reasoning (KR2004), Whistler, BC, 2-5 June 2004. pp. 114–120.
    Software application ontologies have the potential to become the keystone in state-of-the-art information management techniques. It is expected that these ontologies will support the sort of reasoning power required to navigate large and complex terminologies correctly and efficiently. Yet, there is one problem in particular that continues to stand in our way. As these terminological structures increase in size and complexity, and the drive to integrate them inevitably swells, it is clear that the level of consistency required for such navigation (...)
    No categories
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   4 citations  
  28.  24
    JS Mill's Conception of Utility.I. Terminology - 2010 - Utilitas 22 (1).
  29. Josef Perner.Terminological Preamble - 2001 - In C. Moore & Karen Lemmon (eds.), The Self in Time: Developmental Perspectives. Erlbaum. pp. 181.
     
    Export citation  
     
    Bookmark  
  30.  4
    Recognising and Remembering.A. Terminological Preamble - 1993 - In A. Collins, S. Gathercole, Martin A. Conway & P. E. Morris (eds.), Theories of Memory. Lawrence Erlbaum. pp. 1--163.
    Direct download  
     
    Export citation  
     
    Bookmark  
  31. Revising the UMLS Semantic Network.Steffen Schulze-Kremer, Barry Smith & Anand Kumar - 2004 - In Schulze-Kremer Steffen, Smith Barry & Kumar Anand (eds.), MedInfo.
    The integration of standardized biomedical terminologies into a single, unified knowledge representation system has formed a key area of applied informatics research in recent years. The Unified Medical Language System (UMLS) is the most advanced and most prominent effort in this direction, bringing together within its Metathesaurus a large number of distinct source-terminologies. The UMLS Semantic Network, which is designed to support the integration of these source-terminologies, has proved to be a highly successful combination of formal coherence and broad (...)
    Direct download  
     
    Export citation  
     
    Bookmark   6 citations  
  32. Ontological Realism: Methodology or Misdirection?Gary H. Merrill - 2010 - Applied ontology 5 (2):79-108.
    In a series of papers over a period of several years Barry Smith andWerner Ceusters have offered a number of cogent criticisms of historical approaches to creating, maintaining, and applying biomedical terminologies and ontologies. And they have urged the adoption of what they refer to as a “realism-based” approach. Indeed, at times they insist that the realism-based approach not only offers clear advantages and a well-founded methodological basis for ontology development and evaluation, but that such a realist perspective is (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   17 citations  
  33. Bioportal: Ontologies and integrated data resources at the click of the mouse.L. Whetzel Patricia, H. Shah Nigam, F. Noy Natalya, Dai Benjamin, Dorf Michael, Griffith Nicholas, Jonquet Clement, Youn Cherie, Callendar Chris, Coulet Adrien, Barry Smith, Chris Chute & Mark Musen - 2011 - In Whetzel Patricia L., Shah Nigam H., Noy Natalya F., Benjamin Dai, Michael Dorf, Nicholas Griffith, Clement Jonquet, Cherie Youn, Chris Callendar, Adrien Coulet, Smith Barry, Chute Chris & Musen Mark (eds.), Proceedings of the 2nd International Conference on Biomedical Ontology, Buffalo, NY. pp. 292-293.
    BioPortal is a Web portal that provides access to a library of biomedical ontologies and terminologies developed in OWL, RDF(S), OBO format, Protégé frames, and Rich Release Format. BioPortal functionality, driven by a service-oriented architecture, includes the ability to browse, search and visualize ontologies (Figure 1). The Web interface also facilitates community-based participation in the evaluation and evolution of ontology content.
    No categories
    Direct download  
     
    Export citation  
     
    Bookmark   1 citation  
  34. SNOMED CT standard ontology based on the ontology for general medical science.Shaker El-Sappagh, Francesco Franda, Ali Farman & Kyung-Sup Kwak - 2018 - BMC Medical Informatics and Decision Making 76 (18):1-19.
    Background: Systematized Nomenclature of Medicine—Clinical Terms (SNOMED CT, hereafter abbreviated SCT) is acomprehensive medical terminology used for standardizing the storage, retrieval, and exchange of electronic healthdata. Some efforts have been made to capture the contents of SCT as Web Ontology Language (OWL), but theseefforts have been hampered by the size and complexity of SCT. Method: Our proposal here is to develop an upper-level ontology and to use it as the basis for defining the termsin SCT in a way that (...)
    Direct download  
     
    Export citation  
     
    Bookmark   1 citation  
  35. Semantics in Support of Biodiversity: An Introduction to the Biological Collections Ontology and Related Ontologies.Ramona L. Walls, John Deck, Robert Guralnik, Steve Baskauf, Reed Beaman, Stanley Blum, Shawn Bowers, Pier Luigi Buttigieg, Neil Davies, Dag Endresen, Maria Alejandra Gandolfo, Robert Hanner, Alyssa Janning, Barry Smith & Others - 2014 - PLoS ONE 9 (3):1-13.
    The study of biodiversity spans many disciplines and includes data pertaining to species distributions and abundances, genetic sequences, trait measurements, and ecological niches, complemented by information on collection and measurement protocols. A review of the current landscape of metadata standards and ontologies in biodiversity science suggests that existing standards such as the Darwin Core terminology are inadequate for describing biodiversity data in a semantically meaningful and computationally useful way. Existing ontologies, such as the Gene Ontology and others in the (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   4 citations  
  36. Establishing and Harmonizing Ontologies in an Interdisciplinary Health Care and Clinical Research Environment.Barry Smith & Mathias Brochhausen - 2008 - Studies in Health, Technology and Informatics 134:219-234.
    Ontologies are being ever more commonly used in biomedical informatics and we provide a survey of some of these uses, and of the relations between ontologies and other terminology resources. In order for ontologies to become truly useful, two objectives must be met. First, ways must be found for the transparent evaluation of ontologies. Second, existing ontologies need to be harmonised. We argue that one key foundation for both ontology evaluation and harmonisation is the adoption of a realist (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  37. Ontologies for the study of neurological disease.Alexander P. Cox, Mark Jensen, William Duncan, Bianca Weinstock-Guttman, Kinga Szigeti, Alan Ruttenberg, Barry Smith & Alexander D. Diehl - 2012 - In Alexander P. Cox, Mark Jensen, William Duncan, Bianca Weinstock-Guttman, Kinga Szigeti, Alan Ruttenberg, Barry Smith & Alexander D. Diehl (eds.), Towards an Ontology of Mental Functioning (ICBO Workshop), Third International Conference on Biomedical Ontology. Graz:
    We have begun work on two separate but related ontologies for the study of neurological diseases. The first, the Neurological Disease Ontology (ND), is intended to provide a set of controlled, logically connected classes to describe the range of neurological diseases and their associated signs and symptoms, assessments, diagnoses, and interventions that are encountered in the course of clinical practice. ND is built as an extension of the Ontology for General Medical Sciences — a high-level candidate OBO Foundry ontology that (...)
    Direct download  
     
    Export citation  
     
    Bookmark   3 citations  
  38.  24
    Public Concerns in the United Kingdom about General and Specific Applications of Genetic Engineering: Risk, Benefit, and Ethics.Richard Shepherd, Chaya Howard & Lynn J. Frewer - 1997 - Science, Technology and Human Values 22 (1):98-124.
    The repertory grid method was used to determine what terminology respondents use to distinguish between different applications of genetic engineering drawn from food- related, agricultural, and medical applications. Respondents were asked to react to fifteen applications phrased in general terms, and results compared with a second study where fifteen more specific applications were used as stimuli. Both sets of data were submitted to generalized Procrustes analysis. Applications associated with animals or human genetic material were described as causing ethical concern, (...)
    Direct download  
     
    Export citation  
     
    Bookmark   17 citations  
  39. The ImmPort Antibody Ontology.William Duncan, Travis Allen, Jonathan Bona, Olivia Helfer, Barry Smith, Alan Ruttenberg & Alexander D. Diehl - 2016 - Proceedings of the International Conference on Biological Ontology 1747.
    Monoclonal antibodies are essential biomedical research and clinical reagents that are produced by companies and research laboratories. The NIAID ImmPort (Immunology Database and Analysis Portal) resource provides a long-term, sustainable data warehouse for immunological data generated by NIAID, DAIT and DMID funded investigators for data archiving and re-use. A variety of immunological data is generated using techniques that rely upon monoclonal antibody reagents, including flow cytometry, immunofluorescence, and ELISA. In order to facilitate querying, integration, and reuse of data, standardized (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  40. Mistakes in medical ontologies: Where do they come from and how can they be detected?Werner Ceusters, Barry Smith, Anand Kumar & Christoffel Dhaen - 2004 - Studies in Health and Technology Informatics 102:145-164.
    We present the details of a methodology for quality assurance in large medical terminologies and describe three algorithms that can help terminology developers and users to identify potential mistakes. The methodology is based in part on linguistic criteria and in part on logical and ontological principles governing sound classifications. We conclude by outlining the results of applying the methodology in the form of a taxonomy different types of errors and potential errors detected in SNOMED-CT.
    No categories
    Direct download  
     
    Export citation  
     
    Bookmark   9 citations  
  41.  93
    Coordinating virus research: The Virus Infectious Disease Ontology.John Beverley, Shane Babcock, Gustavo Carvalho, Lindsay G. Cowell, Sebastian Duesing, Yongqun He, Regina Hurley, Eric Merrell, Richard H. Scheuermann & Barry Smith - 2024 - PLoS ONE 1.
    The COVID-19 pandemic prompted immense work on the investigation of the SARS-CoV-2 virus. Rapid, accurate, and consistent interpretation of generated data is thereby of fundamental concern. Ontologies––structured, controlled, vocabularies––are designed to support consistency of interpretation, and thereby to prevent the development of data silos. This paper describes how ontologies are serving this purpose in the COVID-19 research domain, by following principles of the Open Biological and Biomedical Ontology (OBO) Foundry and by reusing existing ontologies such as the Infectious Disease (...)
    Direct download  
     
    Export citation  
     
    Bookmark  
  42. Would SNOMED CT benefit from realism-based ontology evolution?Werner Ceusters, Kent Spackman & Barry Smith - 2007 - AMIA Annual Symposium Proceedings 2007:105-109.
    If SNOMED CT is to serve as a biomedical reference terminology, then steps must be taken to ensure comparability of information formulated using successive versions. New releases are therefore shipped with a history mechanism. We assessed the adequacy of this mechanism for its treatment of the distinction between changes occurring on the side of entities in reality and changes in our understanding thereof. We found that these two types are only partially distinguished and that a more detailed study (...)
    Direct download  
     
    Export citation  
     
    Bookmark   7 citations  
  43. Semantic interoperability in healthcare. State of the art in the US. A position paper with background materials.Werner Ceusters & Barry Smith - 2010 - In European Union ARGOS Project: Transatlantic Observatory for Meeting Global Health Policy Challenges through ICT-Enabled Solution.
    Semantic interoperability can be defined as the ability of two or more computer systems to exchange information in such a way that the meaning of that information can be automatically interpreted by the receiving system accurately enough to produce useful results to the end users of both systems. Several activities are currently being performed by a variety of stakeholders to achieve semantic interoperability in healthcare. Many of these activities are not beneficial, because they place too great a focus on business (...)
    Direct download  
     
    Export citation  
     
    Bookmark  
  44.  11
    Taking Issue: Pluralism and Casuistry in Bioethics.Baruch A. Brody - 2003 - Georgetown University Press.
    "When it comes to morality as it is practiced in medicine, Brody makes clear that the ethical issues are never as simple as black and white - that there are myriad factors and fine nuances that can and should challenge decision making as it is commonly practiced in difficult medical cases. In this collection, delving thoughtfully and systematically into methodology, research ethics, clinical ethics, and Jewish medical ethics, he tackles thorny life-and-death questions head-on and fearlessly. He casts a light into (...)
    Direct download  
     
    Export citation  
     
    Bookmark   8 citations  
  45. Applications of the ACGT Master Ontology on Cancer.Mathias Brochhausen, Gabriele Weiler, Luis Martín, Cristian Cocos, Holger Stenzhorn, Norbert Graf, Martin Dörr, Manolis Tsiknakis & Barry Smith - 2008 - In R. Meersman & P. Herrero (eds.), Proceedings of 4th International IFIP Workshop On Semantic Web and Web Semantics (OTM 2008: Workshops), LNCS 5333. pp. 1046–1055.
    In this paper we present applications of the ACGT Master Ontology (MO) which is a new terminology resource for a transnational network providing data exchange in oncology, emphasizing the integration of both clinical and molecular data. The development of a new ontology was necessary due to problems with existing biomedical ontologies in oncology. The ACGT MO is a test case for the application of best practices in ontology development. This paper provides an overview of the application of the (...)
    Direct download  
     
    Export citation  
     
    Bookmark   2 citations  
  46.  25
    Entities and relations in medical imaging: An analysis of computed tomography reporting.Dirk Marwede & James Matthew Fielding - 2007 - Applied Ontology 2 (1):67-79.
  47. The Unified Medical Language System and the Gene Ontology: Some critical reflections.Anand Kumar & Barry Smith - 2003 - In A. Günter, R. Kruse & B. Neumann (eds.), KI 2003: Advances in Artificial Intelligence. Berlin: Springer. pp. 135-148.
    The Unified Medical Language System and the Gene Ontology are among the most widely used terminology resources in the biomedical domain. However, when we evaluate them in the light of simple principles for wellconstructed ontologies we find a number of characteristic inadequacies. Employing the theory of granular partitions, a new approach to the understanding of ontologies and of the relationships ontologies bear to instances in reality, we provide an application of this theory in relation to an example drawn (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   9 citations  
  48. Context-based task ontologies for clinical guidelines.Anand Kumar, Paolo Ciccarese, Barry Smith & Matteo Piazza - 2004 - In D. Pisanelli (ed.), Ontologies in Medicine: Proceedings of the Workshop on Medical Ontologies, Rome October 2003 (Studies in Health and Technology Informatics, 102). Amsterdam: IOS Press. pp. 81-94.
    Evidence-based medicine relies on the execution of clinical practice guidelines and protocols. A great deal of of effort has been invested in the development of various tools which automate the representation and execution of the recommendations contained within such guidelines and protocols by creating Computer Interpretable Guideline Models (CIGMs). Context-based task ontologies (CTOs), based on standard terminology systems like UMLS, form one of the core components of such a model. We have created DAML+OIL-based CTOs for the tasks mentioned in (...)
    No categories
    Direct download  
     
    Export citation  
     
    Bookmark   2 citations  
  49.  20
    The multiple meanings of translational research in (bio)medical research.Anne K. Krueger, Barbara Hendriks & Stephan Gauch - 2019 - History and Philosophy of the Life Sciences 41 (4):57.
    Translational research is a buzzword which dominates discussions about the quality, the utilization, and the benefits of medical research. Yet, although translational research has become a prominent topic, no commonly agreed definition of this terminology exists. Instead, experts from different contexts such as biomedical research, clinical practice or nursing discuss translational research in multiple ways depending on how they define the problem that translational research is supposed to be the solution to. In this paper, we do not seek (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   3 citations  
  50.  12
    The multiple meanings of translational research in (bio)medical research.Anne K. Krueger, Barbara Hendriks & Stephan Gauch - 2019 - History and Philosophy of the Life Sciences 41 (4):1-24.
    Translational research is a buzzword which dominates discussions about the quality, the utilization, and the benefits of medical research. Yet, although translational research has become a prominent topic, no commonly agreed definition of this terminology exists. Instead, experts from different contexts such as biomedical research, clinical practice or nursing discuss translational research in multiple ways depending on how they define the problem that translational research is supposed to be the solution to. In this paper, we do not seek (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   3 citations  
1 — 50 / 991