What I think remains sustainable and valid in Hegel's thought is the attempt to regard the ongoing crisis of reason as itself constitutive of self-consciousness. |s Revue Internationale de Philosophie |d 01/10/1996.
This work has been selected by scholars as being culturally important, and is part of the knowledge base of civilization as we know it. This work was reproduced from the original artifact, and remains as true to the original work as possible. Therefore, you will see the original copyright references, library stamps, and other notations in the work. This work is in the public domain in the United States of America, and possibly other nations. Within the United States, you may (...) freely copy and distribute this work, as no entity has a copyright on the body of the work. As a reproduction of a historical artifact, this work may contain missing or blurred pages, poor pictures, errant marks, etc. Scholars believe, and we concur, that this work is important enough to be preserved, reproduced, and made generally available to the public. We appreciate your support of the preservation process, and thank you for being an important part of keeping this knowledge alive and relevant. (shrink)
G. W. F. Hegel is an immensely important yet difficult philosopher. Philosophy of Mind is the third part of Hegel's Encyclopaedia of the Philosophical Sciences, in which he summarizes his philosophical system. It is one of the main pillars of his thought. Michael Inwood presents this central work to the modern reader in an intelligible and accurate new translation---the first into English since 1894---that loses nothing of the style of Hegel's thought. In his editorial introduction Inwood offers a philosophically sophisticated (...) evaluation of Hegel's ideas which includes a survey of the whole of Hegel's thought and detailed analysis of the terminology he used. (shrink)
This volume is presented as a companion study to my translation of Galileo's MS 27, Galileo's Logical Treatises, which contains Galileo's appropriated questions on Aristotle's Posterior Analytics - a work only recently transcribed from the Latin autograph. Its purpose is to acquaint an English-reading audience with the teaching in those treatises. This is basically a sixteenth-century logic of discovery and of proof about which little is known in the present day, yet one that arguably guided the most significant research program (...) of the seventeenth century. Despite its historical and systematic importance, the teaching is difficult to explain to the modern reader. Part of the problem stems from the fragmentary nature of the manuscript in which it is preserved, part from the contents of the teaching itself, which requires a considerable propadeutic for its comprehension. A word of explanation is thus required to set out the structure of the volume and to detail the editorial decisions that underlie its organization. Two major manuscript studies have advanced the cause of scholarship on Galileo within the past two decades. The first relates to Galileo's experimental activity at Padua prior to his discoveries with the telescope that led to the publication of his Sidereus nuncius in 1610. Much of this activity has been uncovered by Stillman Drake in analyses of manuscript fragments associated with the composition of Galileo's Two New Sciences, fragments now bound in a codex identified as MS 72 in the collection of Galileiana at the Biblioteca Nazionale Centrale in Florence. (shrink)
Galileo's view of science is indebted to the teaching of the Jesuit professors at the Collegio Romano, but Galileo's concept of mathematical physics also corresponds to that of Giovan Battista Benedetti. Lacking documentary evidence that would connect Benedetti directly with the Jesuits, or the Jesuits with Benedetti, I infer a common source: the Spanish connection, that is, Domingo de Soto. I then give indications that the fourteenth-century work at Oxford and Paris on calculationes was transmitted via Spain and Portugal to (...) Rome and other centers where Jesuits had colleges, and figured in the rise of mathematical physics at the beginning of the seventeenth century. A result of these researches is their vindication of Duhem, as contrasted with Koyré, on the origins of modern mechanics. (shrink)
Contemporary thinkers who address the problem of causal relations generally favor Hume’s analysis, although some periodically manifest interest in Aristotle’s exposition as an important and viable alternative. Few, however, find among the many philosophers who came between Aristotle and Hume any worthwhile contributor to the development of this problematic. Some might note, for example, Nicholas of Autrecourt as a medieval precursor of Hume, but this merely keeps the discussion fluctuating between the same two poles. This essay aims to call attention (...) to a different and intermediate view, not hitherto noted, that was proposed in the High Middle Ages by Thomas Aquinas. It argues that Aquinas made a significant advance beyond Aristotle in his analysis of antecedent causation, and thereby made possible the certification of some elements in Hume’s analysis, without subscribing to its more extreme results. In so doing, moreover, Aquinas adumbrated some problems in contemporary analytic discussions of the causal relationships between events, and consequently may shed light on their solution. (shrink)
THE pervasive role of causality in the development of Galileo's science has been obscured largely by two factors. Philosophers who address the problem usually exhibit an anti-causal bias traceable to David Hume, and this disposes them to concentrate on passages in Galileo's writings that can be given a positivist interpretation. Historians are likewise selective in their treatment of his texts, for they tend to enforce sharp dichotomies between Galileo's earlier Latin compositions and his treatises in Italian, especially the two dialogues (...) of his later years for which he is justly famous. With this twofold reinforcement from philosophers and historians of science, one might think that the problem of causality in Galileo's science is whether or not the Italian physicist actually reasoned in causal terms such as those explained in Aristotle's Posterior Analytics. A large and influential school at the moment would say that this is the question, and that it is best answered in the negative: causal analysis played little or no role in the development of Galileo's science, and certainly less and less in his later years. Indeed, it was his rejection of Aristotle precisely on these grounds that merits for him the title, "Father of Modern Science," the canons of which science are almost diametrically opposite those of the science advocated by Greek peripatetics and medieval scholastics, before the onset of the modern era. (shrink)
What I think remains sustainable and valid in Hegel's thought is the attempt to regard the ongoing crisis of reason as itself constitutive of self-consciousness. |s Revue Internationale de Philosophie |d 01/10/1996.
The aim of this paper is to report some little-known aspects of sixteenth-century physics as these relate to the development of mechanics in the seventeenth century. The research herein reported grew out of a study on the mechanics of Domingo de Soto, a sixteenth-century Spanish scholastic,1 which has been concerned, in part, with examining critically Pierre Duhem's thesis that the English “Calculatores” of the fourteenth century were a primary source for Galileo's science.2 The conclusion to which this has come, thus (...) far, is that Duhem had important insights into the late medieval preparation for the modern science of mechanics, but that he left out many of the steps. And the steps are important, whether one holds for a continuity theory or a discontinuity theory vis-à-vis the connection between late medieval and early modern science. (shrink)
This edition, with translation and notes, by an outstanding historian of medieval optics, should serve to make Roger Bacon better understood and appreciated by those interested in the history of Western thought. Some time ago Bacon was lauded as a precursor of modern science, as an inventor, an innovator in the use of experimental and mathematical methods, a man ahead of his time whose genius went unnoticed by his contemporaries. Then a reaction set in, and the claim was made that (...) his results were all anticipated by others, especially by Robert Grosseteste, and that he had really contributed little to the advance of scientific knowledge. Lindberg sets the record straight in his careful and documented study of these seminal writings. As he notes in summary: "[T]his work did not foreshadow the science of subsequent ages...; rather, it represents an intelligent and creative response to a variety of ancient traditions. Bacon did not possess a seventeenth-century or twentieth-century mind, but a very good thirteenth-century one; and there is no possibility of understanding his achievement unless we view it in medieval context". (shrink)