Geometry

Edited by Nemi Boris Pelgrom (Ludwig Maximilians Universität, München)
Related categories

309 found
Order:
1 — 50 / 309
  1. Why did Fermat believe he had `a truly marvellous demonstration' of FLT?Bhupinder Singh Anand - manuscript
    Conventional wisdom dictates that proofs of mathematical propositions should be treated as necessary, and sufficient, for entailing `significant' mathematical truths only if the proofs are expressed in a---minimally, deemed consistent---formal mathematical theory in terms of: * Axioms/Axiom schemas * Rules of Deduction * Definitions * Lemmas * Theorems * Corollaries. Whilst Andrew Wiles' proof of Fermat's Last Theorem FLT, which appeals essentially to geometrical properties of real and complex numbers, can be treated as meeting this criteria, it nevertheless leaves two (...)
    Remove from this list   Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  2. Euclidean Geometry is a Priori.Boris Culina -
    In the article, an argument is given that Euclidean geometry is a priori in the same way that numbers are a priori, the result of modelling, not the world, but our activities in the world.
    Remove from this list   Direct download  
     
    Export citation  
     
    Bookmark  
  3. The Point or the Primary Geometric Object.ZERARI Fathi - manuscript
    The definition of a point in geometry is primordial in order to understand the different elements of this branch of mathematics ( line, surface, solids…). This paper aims at shedding fresh light on the concept to demonstrate that it is related to another one named, here, the Primary Geometric Object; both concepts concur to understand the multiplicity of geometries and to provide hints as concerns a new understanding of some concepts in physics such as time, energy, mass….
    Remove from this list   Direct download  
     
    Export citation  
     
    Bookmark  
  4. Cónicas y Superficies Cuádricas.Jonathan Taborda & Jaime Chica - manuscript
    There are two problems Analytical Geometry with facing anyone who studies this discipline: define the nature of the locus represented by the general equation 2do degree in two or three variables: That curve represents the plane? What surface is in space? These two problems are posed and solved by applying the study of matrices and spectral theory.
    Remove from this list   Direct download  
     
    Export citation  
     
    Bookmark  
  5. Conics and Quadric surfaces.Jonathan Taborda & Jaime Chica - manuscript
    There are two problems Analytical Geometry with facing anyone who studies this discipline: define the nature of the locus represented by the general equation 2do degree in two or three variables: That curve represents the plane? What surface is in space? These two problems are posed and solved by applying the study of matrices and spectral theory.
    Remove from this list   Direct download  
     
    Export citation  
     
    Bookmark  
  6. A Philosopher Looks at Non-Commutative Geometry.Nick Huggett - 2018
    This paper introduces some basic ideas and formalism of physics in non-commutative geometry. My goals are three-fold: first to introduce the basic formal and conceptual ideas of non-commutative geometry, and second to raise and address some philosophical questions about it. Third, more generally to illuminate the point that deriving spacetime from a more fundamental theory requires discovering new modes of `physically salient' derivation.
    Remove from this list   Direct download (2 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  7. Explaining Experience In Nature: The Foundations Of Logic And Apprehension.Steven Ericsson-Zenith - forthcoming - Institute for Advanced Science & Engineering.
    At its core this book is concerned with logic and computation with respect to the mathematical characterization of sentient biophysical structure and its behavior. -/- Three related theories are presented: The first of these provides an explanation of how sentient individuals come to be in the world. The second describes how these individuals operate. And the third proposes a method for reasoning about the behavior of individuals in groups. -/- These theories are based upon a new explanation of experience in (...)
    Remove from this list  
     
    Export citation  
     
    Bookmark  
  8. Mathematical Progress — On Maddy and Beyond.Simon Weisgerber - forthcoming - Philosophia Mathematica.
    A key question of the ‘maverick’ tradition of the philosophy of mathematical practice is addressed, namely what is mathematical progress. The investigation is based on an article by Penelope Maddy devoted to this topic in which she considers only contributions ‘of some mathematical importance’ as progress. With the help of a case study from contemporary mathematics, more precisely from tropical geometry, a few issues with her proposal are identified. Taking these issues into consideration, an alternative account of ‘mathematical importance’, broadly (...)
    Remove from this list   Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  9. Idéaux de preuve : explication et pureté.Andrew Arana - 2022 - In Andrew Arana & Marco Panza (eds.), Précis de philosophie de la logique et des mathématiques. Volume 2, philosophie des mathématiques. Paris, France: pp. 387-425.
    Why do mathematics often give several proofs of the same theorem? This is the question raised in this article, introducing the notion of an epistemic ideal and discussing two such ideals, the explanatoriness and purity of proof.
    Remove from this list  
     
    Export citation  
     
    Bookmark  
  10. An Okapi Hypothesis: Non-Euclidean Geometry and the Professional Expert in American Mathematics.Jemma Lorenat - 2022 - Isis 113 (1):85-107.
    Open Court began publishingThe Monistin 1890 as a journal“devotedto the philosophy of science”that regularly included mathematics. The audiencewas understood to be“cultured people who have not a technical mathematicaltraining”but nevertheless“have a mathematical penchant.”With these constraints,the mathematical content varied from recreations to logical foundations, but every-one had something to say about non-Euclidean geometry, in debates that rangedfrom psychology to semantics. The focus in this essay is on the contested value ofmathematical expertise in legitimating what should be considered as mathematics.While some mathematicians urgedThe (...)
    Remove from this list   Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  11. The Constitution of Weyl’s Pure Infinitesimal World Geometry.C. D. McCoy - 2022 - Hopos: The Journal of the International Society for the History of Philosophy of Science 12 (1):189–208.
    Hermann Weyl was one of the most important figures involved in the early elaboration of the general theory of relativity and its fundamentally geometrical spacetime picture of the world. Weyl’s development of “pure infinitesimal geometry” out of relativity theory was the basis of his remarkable attempt at unifying gravitation and electromagnetism. Many interpreters have focused primarily on Weyl’s philosophical influences, especially the influence of Husserl’s transcendental phenomenology, as the motivation for these efforts. In this article, I argue both that these (...)
    Remove from this list   Direct download (5 more)  
     
    Export citation  
     
    Bookmark  
  12. La Neutro-Geometría y la Anti-Geometría como Alternativas y Generalizaciones de las Geometrías no Euclidianas.Florentin Smarandache - 2022 - Neutrosophic Computing and Machine Learning 20 (1):91-104.
    In this paper we extend Neutro-Algebra and Anti-Algebra to geometric spaces, founding Neutro/Geometry and AntiGeometry. While Non-Euclidean Geometries resulted from the total negation of a specific axiom (Euclid's Fifth Postulate), AntiGeometry results from the total negation of any axiom or even more axioms of any geometric axiomatic system (Euclidean, Hilbert, etc. ) and of any type of geometry such as Geometry (Euclidean, Projective, Finite, Differential, Algebraic, Complex, Discrete, Computational, Molecular, Convex, etc.), and Neutro-Geometry results from the partial negation of one (...)
    Remove from this list   Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  13. Mathematical Selves and the Shaping of Mathematical Modernism: Conflicting Epistemic Ideals in the Emergence of Enumerative Geometry.Nicolas Michel - 2021 - Isis 112 (1):68-92.
  14. The Homeomorphism of Minkowski Space and the Separable Complex Hilbert Space: The physical, Mathematical and Philosophical Interpretations.Vasil Penchev - 2021 - Logic and Philosophy of Mathematics eJournal (Elsevier: SSRN) 14 (3):1-22.
    A homeomorphism is built between the separable complex Hilbert space (quantum mechanics) and Minkowski space (special relativity) by meditation of quantum information (i.e. qubit by qubit). That homeomorphism can be interpreted physically as the invariance to a reference frame within a system and its unambiguous counterpart out of the system. The same idea can be applied to Poincaré’s conjecture (proved by G. Perelman) hinting at another way for proving it, more concise and meaningful physically. Furthermore, the conjecture can be generalized (...)
    Remove from this list   Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  15. NeutroGeometry & AntiGeometry are alternatives and generalizations of the Non-Euclidean Geometries (revisited).Florentin Smarandache - 2021 - Neutrosophic Sets and Systems 46 (1):456-477.
    In this paper we extend the NeutroAlgebra & AntiAlgebra to the geometric spaces, by founding the NeutroGeometry & AntiGeometry. While the Non-Euclidean Geometries resulted from the total negation of one specific axiom (Euclid’s Fifth Postulate), the AntiGeometry results from the total negation of any axiom or even of more axioms from any geometric axiomatic system (Euclid’s, Hilbert’s, etc.) and from any type of geometry such as (Euclidean, Projective, Finite, Affine, Differential, Algebraic, Complex, Discrete, Computational, Molecular, Convex, etc.) Geometry, and the (...)
    Remove from this list   Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  16. NeutroGeometry & AntiGeometry are alternatives and generalizations of the Non-Euclidean Geometries (revisited).Florentin Smarandache - 2021 - Neutrosophic Sets and Systems 46 (1):456-477.
    In this paper we extend the NeutroAlgebra & AntiAlgebra to the geometric spaces, by founding the NeutroGeometry & AntiGeometry.
    Remove from this list   Direct download  
     
    Export citation  
     
    Bookmark  
  17. Points as Higher-order Constructs: Whitehead’s Method of Extensive Abstraction.Achille C. Varzi - 2021 - In Stewart Shapiro & Geoffrey Hellman (eds.), The History of Continua: Philosophical and Mathematical Perspectives. Oxford: Oxford University Press. pp. 347–378.
    Euclid’s definition of a point as “that which has no part” has been a major source of controversy in relation to the epistemological and ontological presuppositions of classical geometry, from the medieval and modern disputes on indivisibilism to the full development of point-free geometries in the 20th century. Such theories stem from the general idea that all talk of points as putative lower-dimensional entities must and can be recovered in terms of suitable higher-order constructs involving only extended regions (or bodies). (...)
    Remove from this list   Direct download  
     
    Export citation  
     
    Bookmark   1 citation  
  18. From practical to pure geometry and back.Mario Bacelar Valente - 2020 - Revista Brasileira de História da Matemática 20 (39):13-33.
    The purpose of this work is to address the relation existing between ancient Greek practical geometry and ancient Greek pure geometry. In the first part of the work, we will consider practical and pure geometry and how pure geometry can be seen, in some respects, as arising from an idealization of practical geometry. From an analysis of relevant extant texts, we will make explicit the idealizations at play in pure geometry in relation to practical geometry, some of which are basically (...)
    Remove from this list   Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  19. Continua.Lu Chen - 2020 - Dissertation, University of Massachusetts Amherst
    The subject of my dissertation is the structure of continua and, in particular, of physical space and time. Consider the region of space you occupy: is it composed of indivisible parts? Are the indivisible parts, if any, extended? Are there infinitesimal parts? The standard view that space is composed of unextended points faces both \textit{a priori} and empirical difficulties. In my dissertation, I develop and evaluate several novel approaches to these questions based on metaphysical, mathematical and physical considerations. In particular, (...)
    Remove from this list   Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  20. Resenha do livro "Variational Approach to Gravity Field Theories - From Newton to Einstein and Beyond".Alessio Gava - 2020 - Revista Brasileira de Ensino de Física 42.
    This is a critical review of the book Variational Approach to Gravity Field Theories - From Newton to Einstein and Beyond (2017), written by the Italian astrophysicist Alberto Vecchiato. In his work, Vecchiato shows that physics, as we know it, can be built up from simple mathematical models that become more complex step by step by gradually introducing new principles. The reader is invited to follow the steps that lead from classical physics to relativity and to understand how this happens (...)
    Remove from this list   Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  21. The isomorphism of Minkowski space and the separable complex Hilbert space and its physical interpretation.Vasil Penchev - 2020 - Philosophy of Science eJournal (Elsevier:SSRN) 13 (31):1-3.
    An isomorphism is built between the separable complex Hilbert space (quantum mechanics) and Minkowski space (special relativity) by meditation of quantum information (i.e. qubit by qubit). That isomorphism can be interpreted physically as the invariance between a reference frame within a system and its unambiguous counterpart out of the system. The same idea can be applied to Poincaré’s conjecture (proved by G. Perelman) hinting another way for proving it, more concise and meaningful physically. Mathematically, the isomorphism means the invariance to (...)
    Remove from this list   Direct download (4 more)  
     
    Export citation  
     
    Bookmark  
  22. Mathématiques et architecture: le tracé de l’entasis par Nicolas-François Blondel.Dominique Raynaud - 2020 - Archive for History of Exact Sciences 74 (5):445-468.
    In Résolution des quatre principaux problèmes d’architecture (1673) then in Cours d’architecture (1683), the architect–mathematician Nicolas-François Blondel addresses one of the most famous architectural problems of all times, that of the reduction in columns (entasis). The interest of the text lies in the variety of subjects that are linked to this issue. (1) The text is a response to the challenge launched by Curabelle in 1664 under the name Étrenne à tous les architectes; (2) Blondel mathematicizes the problem in the (...)
    Remove from this list   Direct download (3 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  23. Geometrical objects and figures in practical, pure, and applied geometry.Mario Bacelar Valente - 2020 - Disputatio. Philosophical Research Bulletin 9 (15):33-51.
    The purpose of this work is to address what notion of geometrical object and geometrical figure we have in different kinds of geometry: practical, pure, and applied. Also, we address the relation between geometrical objects and figures when this is possible, which is the case of pure and applied geometry. In practical geometry it turns out that there is no conception of geometrical object.
    Remove from this list   Direct download  
     
    Export citation  
     
    Bookmark   1 citation  
  24. Explicaciones Geométrico-Diagramáticas en Física desde una Perspectiva Inferencial.Javier Anta - 2019 - Revista Colombiana de Filosofía de la Ciencia 38 (19).
    El primer objetivo de este artículo es mostrar que explicaciones genuinamente geométricas/matemáticas e intrínsecamente diagramáticas de fenómenos físicos no solo son posibles en la práctica científica, sino que además comportan un potencial epistémico que sus contrapartes simbólico-verbales carecen. Como ejemplo representativo utilizaremos la metodología geométrica de John Wheeler (1963) para calcular cantidades físicas en una reacción nuclear. Como segundo objetivo pretendemos analizar, desde un marco inferencial, la garantía epistémica de este tipo de explicaciones en términos de dependencia sintáctica y semántica (...)
    Remove from this list   Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  25. Geometry of motion: some elements of its historical development.Mario Bacelar Valente - 2019 - ArtefaCToS. Revista de Estudios de la Ciencia y la Tecnología 8 (2):4-26.
    in this paper we return to Marshall Clagett’s view about the existence of an ancient Greek geometry of motion. It can be read in two ways. As a basic presentation of ancient Greek geometry of motion, followed by some aspects of its further development in landmark works by Galileo and Newton. Conversely, it can be read as a basic presentation of aspects of Galileo’s and Newton’s mathematics that can be considered as developments of a geometry of motion that was first (...)
    Remove from this list   Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  26. Dediche tortuose. La Geometria morale di Vincenzo Viviani e gli imbarazzi dell’eredità galileiana.Sara Bonechi - 2019 - Noctua 6 (1–2):75-181.
    This study of the history and contents of a hitherto unedited work on geometry by Vincenzo Viviani seeks to present a picture of the scientific environment in Italy in the second half of the 17th century, with particular emphasis on Tuscany and the impact the condemnation of Galileo had on ongoing scholarship. Information derived from unedited or less well-known material serves to illuminate a range of prominent and marginal figures who adopted different strategies for the dissemination of Galileo’s thought and (...)
    Remove from this list   Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  27. Geoffrey Hellman and Stewart Shapiro: Varieties of Continua: From Regions to Points and Back.Maureen Donnelly - 2019 - Journal of Philosophy 116 (3):174-178.
    Remove from this list   Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  28. The representation selection problem: Why we should favor the geometric-module framework of spatial reorientation over the view-matching framework.Alexandre Duval - 2019 - Cognition 192 (C):103985.
    Many species rely on the three-dimensional surface layout of an environment to find a desired goal following disorientation. They generally do so to the exclusion of other important spatial cues. Two influential frameworks for explaining that phenomenon are provided by geometric-module theories and view-matching theories of reorientation respectively. The former posit a module that operates only on representations of the global geo- metry of three-dimensional surfaces to guide behavior. The latter place snapshots, stored representations of the subject’s two-dimensional retinal stimulation (...)
    Remove from this list   Direct download (2 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  29. Foundations of geometric cognition.Mateusz Hohol - 2019 - London-New York: Routledge.
    The cognitive foundations of geometry have puzzled academics for a long time, and even today are mostly unknown to many scholars, including mathematical cognition researchers. -/- Foundations of Geometric Cognition shows that basic geometric skills are deeply hardwired in the visuospatial cognitive capacities of our brains, namely spatial navigation and object recognition. These capacities, shared with non-human animals and appearing in early stages of the human ontogeny, cannot, however, fully explain a uniquely human form of geometric cognition. In the book, (...)
    Remove from this list   Direct download (2 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  30. Kant and the Impossibility of Non‐Euclidean Space.Tufan Kıymaz - 2019 - Philosophical Forum 50 (4):485-491.
    In this paper, I discuss the problem raised by the non-Euclidean geometries for the Kantian claim that the axioms of Euclidean geometry are synthetic a priori, and hence necessarily true. Although the Kantian view of geometry faces a serious challenge from non-Euclidean geometries, there are some aspects of Kant’s view about geometry that can still be plausible. I argue that Euclidean geometry, as a science, cannot be synthetic a priori, but the empirical world can still be necessarily Euclidean.
    Remove from this list   Direct download (2 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  31. Andalò di Negro’s De compositione astrolabii: a critical edition with English translation and notes.Bernardo Mota, Samuel Gessner & Dominique Raynaud - 2019 - Archive for History of Exact Sciences 73 (6):551-617.
    In this article, we publish the critical edition of Andalò di Negro’s De compositione astrolabii, with English translation and commentary. The mathematician and astronomer Andalò di Negro presumably redacted this treatise on the astrolabe in the 1330s, while residing at the court of King Robert of Naples. The present edition has three purposes: first, to make available a text missing from the previous compilations of works by Andalò di Negro; second, to revise a privately circulated edition of the text; and (...)
    Remove from this list   Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  32. Francesca Biagioli: Space, Number, and Geometry from Helmholtz to Cassirer: Springer, Dordrecht, 2016, 239 pp, $109.99 , ISBN: 978-3-319-31777-9. [REVIEW]Lydia Patton - 2019 - Journal for General Philosophy of Science / Zeitschrift für Allgemeine Wissenschaftstheorie 50 (2):311-315.
    Francesca Biagioli’s Space, Number, and Geometry from Helmholtz to Cassirer is a substantial and pathbreaking contribution to the energetic and growing field of researchers delving into the physics, physiology, psychology, and mathematics of the nineteenth and twentieth centuries. The book provides a bracing and painstakingly researched re-appreciation of the work of Hermann von Helmholtz and Ernst Cassirer, and of their place in the tradition, and is worth study for that alone. The contributions of the book go far beyond that, however. (...)
    Remove from this list   Direct download (4 more)  
     
    Export citation  
     
    Bookmark  
  33. Fine-structure constant from Sommerfeld to Feynman.Michael A. Sherbon - 2019 - Journal of Advances in Physics 16 (1):335-343.
    The fine-structure constant, which determines the strength of the electromagnetic interaction, is briefly reviewed beginning with its introduction by Arnold Sommerfeld and also includes the interest of Wolfgang Pauli, Paul Dirac, Richard Feynman and others. Sommerfeld was very much a Pythagorean and sometimes compared to Johannes Kepler. The archetypal Pythagorean triangle has long been known as a hiding place for the golden ratio. More recently, the quartic polynomial has also been found as a hiding place for the golden ratio. The (...)
    Remove from this list   Direct download (2 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  34. Perverted Space-Time Geodesy in Einstein’s Views on Geometry.Mario Bacelar Valente - 2018 - Philosophia Scientiae 22:137-162.
    A perverted space-time geodesy results from the idea of variable rods and clocks, whose length and rates are taken to be affected by the gravitational field. By contrast, what we might call a concrete geodesy relies on the idea of invariable unit-measuring rods and clocks. Indeed, this is a basic assumption of general relativity. Variable rods and clocks lead to a perverted geodesy, in the sense that a curved space-time may be seen as a result of a departure from the (...)
    Remove from this list   Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  35. An Elementary System of Axioms for Euclidean Geometry Based on Symmetry Principles.Boris Čulina - 2018 - Axiomathes 28 (2):155-180.
    In this article I develop an elementary system of axioms for Euclidean geometry. On one hand, the system is based on the symmetry principles which express our a priori ignorant approach to space: all places are the same to us, all directions are the same to us and all units of length we use to create geometric figures are the same to us. On the other hand, through the process of algebraic simplification, this system of axioms directly provides the Weyl’s (...)
    Remove from this list   Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  36. A Priori Concepts in Euclidean Proof.Peter Fisher Epstein - 2018 - Proceedings of the Aristotelian Society 118 (3):407-417.
    With the discovery of consistent non-Euclidean geometries, the a priori status of Euclidean proof was radically undermined. In response, philosophers proposed two revisionary interpretations of the practice: some argued that Euclidean proof is a purely formal system of deductive logic; others suggested that Euclidean reasoning is empirical, employing concepts derived from experience. I argue that both interpretations fail to capture the true nature of our geometrical thought. Euclidean proof is not a system of pure logic, but one in which our (...)
    Remove from this list   Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  37. Poincaré on the Foundations of Arithmetic and Geometry. Part 2: Intuition and Unity in Mathematics.Katherine Dunlop - 2017 - Hopos: The Journal of the International Society for the History of Philosophy of Science 7 (1):88-107.
    Part 1 of this article exposed a tension between Poincaré’s views of arithmetic and geometry and argued that it could not be resolved by taking geometry to depend on arithmetic. Part 2 aims to resolve the tension by supposing not merely that intuition’s role is to justify induction on the natural numbers but rather that it also functions to acquaint us with the unity of orders and structures and show practices to fit or harmonize with experience. I argue that in (...)
    Remove from this list   Direct download (2 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  38. A Survey of Geometric Algebra and Geometric Calculus.Alan Macdonald - 2017 - Advances in Applied Clifford Algebras 27:853-891.
    The paper is an introduction to geometric algebra and geometric calculus for those with a knowledge of undergraduate mathematics. No knowledge of physics is required. The section Further Study lists many papers available on the web.
    Remove from this list   Direct download  
     
    Export citation  
     
    Bookmark   1 citation  
  39. Is Geometry Analytic?David Mwakima - 2017 - Dianoia 1 (4):66 - 78.
    In this paper I present critical evaluations of Ayer and Putnam's views on the analyticity of geometry. By drawing on the historico-philosophical work of Michael Friedman on the relativized apriori; and Roberto Torretti on the foundations of geometry, I show how we can make sense of the assertion that pure geometry is analytic in Carnap's sense.
    Remove from this list   Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  40. Fundamental Physics and the Fine-Structure Constant.Michael A. Sherbon - 2017 - International Journal of Physical Research 5 (2):46-48.
    From the exponential function of Euler’s equation to the geometry of a fundamental form, a calculation of the fine-structure constant and its relationship to the proton-electron mass ratio is given. Equations are found for the fundamental constants of the four forces of nature: electromagnetism, the weak force, the strong force and the force of gravitation. Symmetry principles are then associated with traditional physical measures.
    Remove from this list   Direct download (2 more)  
     
    Export citation  
     
    Bookmark   3 citations  
  41. Einstein’s physical chronogeometry.Mario Bacelar Valente - 2017 - Manuscrito 40 (1):241-278.
    ABSTRACT In Einstein’s physical geometry, the geometry of space and the uniformity of time are taken to be non-conventional. However, due to the stipulation of the isotropy of the one-way speed of light in the synchronization of clocks, as it stands, Einstein’s views do not seem to apply to the whole of the Minkowski space-time. In this work we will see how Einstein’s views can be applied to the Minkowski space-time. In this way, when adopting Einstein’s views, chronogeometry is a (...)
    Remove from this list   Direct download (3 more)  
     
    Export citation  
     
    Bookmark   3 citations  
  42. Universal intuitions of spatial relations in elementary geometry.Ineke J. M. Van der Ham, Yacin Hamami & John Mumma - 2017 - Journal of Cognitive Psychology 29 (3):269-278.
    Spatial relations are central to geometrical thinking. With respect to the classical elementary geometry of Euclid’s Elements, a distinction between co-exact, or qualitative, and exact, or metric, spatial relations has recently been advanced as fundamental. We tested the universality of intuitions of these relations in a group of Senegalese and Dutch participants. Participants performed an odd-one-out task with stimuli that in all but one case display a particular spatial relation between geometric objects. As the exact/co-exact distinction is closely related to (...)
    Remove from this list   Direct download  
     
    Export citation  
     
    Bookmark   3 citations  
  43. Imagination in mathematics.Andrew Arana - 2016 - In Amy Kind (ed.), Routledge Handbook on the Philosophy of Imagination. Routledge. pp. 463-477.
    This article will consider imagination in mathematics from a historical point of view, noting the key moments in its conception during the ancient, modern and contemporary eras.
    Remove from this list   Direct download  
     
    Export citation  
     
    Bookmark   2 citations  
  44. Bridging the gap between analytic and synthetic geometry: Hilbert’s axiomatic approach.Eduardo N. Giovannini - 2016 - Synthese 193 (1):31-70.
    The paper outlines an interpretation of one of the most important and original contributions of David Hilbert’s monograph Foundations of Geometry , namely his internal arithmetization of geometry. It is claimed that Hilbert’s profound interest in the problem of the introduction of numbers into geometry responded to certain epistemological aims and methodological concerns that were fundamental to his early axiomatic investigations into the foundations of elementary geometry. In particular, it is shown that a central concern that motivated Hilbert’s axiomatic investigations (...)
    Remove from this list   Direct download (2 more)  
     
    Export citation  
     
    Bookmark   6 citations  
  45. Review of Poincaré, Philosopher of Science. [REVIEW]Nathan Lackey & Cory Wright - 2016 - Philosophy in Review 36 (4):157–159.
  46. Aristotelian Continua.Øystein Linnebo, Stewart Shapiro & Geoffrey Hellman - 2016 - Philosophia Mathematica 24 (2):214-246.
    In previous work, Hellman and Shapiro present a regions-based account of a one-dimensional continuum. This paper produces a more Aristotelian theory, eschewing the existence of points and the use of infinite sets or pluralities. We first show how to modify the original theory. There are a number of theorems that have to be added as axioms. Building on some work by Linnebo, we then show how to take the ‘potential’ nature of the usual operations seriously, by using a modal language, (...)
    Remove from this list   Direct download (3 more)  
     
    Export citation  
     
    Bookmark   3 citations  
  47. Introduction: The Geometry of the Visual Field—Early Modern and Contemporary Approaches.Hannes Matthiessen - 2016 - Topoi 35 (2):461-463.
  48. A Newtonian tale details on notes and proofs in Geneva edition of Newton's Principia.Raffaele Pisano & Paolo Bussotti - 2016 - BSHM-Journal of the British Society for the History of Mathematics:1-19.
    Based on our research regarding the relationship between physics and mathematics in HPS, and recently on Geneva Edition of Newton's Philosophiae Naturalis Principia Mathematica (1739–42) by Thomas Le Seur (1703–70) and François Jacquier (1711–88), in this paper we present some aspects of such Edition: a combination of editorial features and scientific aims. The proof of Proposition XLIII is presented and commented as a case study.
    Remove from this list   Direct download  
     
    Export citation  
     
    Bookmark   10 citations  
  49. Differential Sheaves and Connections: A Natural Approach to Physical Geometry.Anastasios Mallios & Elias Zafiris - 2015 - World Scientific.
    This unique book provides a self-contained conceptual and technical introduction to the theory of differential sheaves. This serves both the newcomer and the experienced researcher in undertaking a background-independent, natural and relational approach to "physical geometry". In this manner, this book is situated at the crossroads between the foundations of mathematical analysis with a view toward differential geometry and the foundations of theoretical physics with a view toward quantum mechanics and quantum gravity. The unifying thread is provided by the theory (...)
    Remove from this list   Direct download (2 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  50. Géométrie pratique. Géomètres, ingénieurs, architectes, XVIe-XVIIIe siècles.Dominique Raynaud (ed.) - 2015 - Besançon: Presses universitaires de Franche-Comté.
    Actes du colloque de Grenoble (8-9 octobre 2009), avec les contributions de Samuel Gessner (Lisbone), Eberhard Knobloch (Berlin), Jorge Galindo Díaz (Bogotá), Joël Sakarovitch (Paris) et Dominique Raynaud (Grenoble).
    Remove from this list   Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
1 — 50 / 309