This category needs an editor. We encourage you to help if you are qualified.
Volunteer, or read more about what this involves.
Related

Contents
766 found
Order:
1 — 50 / 766
  1. On what Hilbert aimed at in the foundations.Besim Karakadılar - manuscript
    Hilbert's axiomatic approach was an optimistic take over on the side of the logical foundations. It was also a response to various restrictive views of mathematics supposedly bounded by the reaches of epistemic elements in mathematics. A complete axiomatization should be able to exclude epistemic or ontic elements from mathematical theorizing, according to Hilbert. This exclusion is not necessarily a logicism in similar form to Frege's or Dedekind's projects. That is, intuition can still have a role in mathematical reasoning. Nevertheless, (...)
    Remove from this list   Direct download  
     
    Export citation  
     
    Bookmark  
  2. Tatiana Ehrenfest-Afanassjewa’s Contributions to Dimensional Analysis.Mahmoud Jalloh - 2025
    Tatiana Ehrenfest-Afanassjewa was an important physicist, mathematician, and educator in 20th century Europe. While some of her work has recently undergone reevaluation, little has been said regarding her groundbreaking work on dimensional analysis. This, in part, reflects an unfortunate dismissal of her interventions in such foundational debates by her contemporaries. In spite of this, her work on the generalized theory of homogeneous equations provides a mathematically sound foundation for dimensional analysis and has found some appreciation and development. It remains to (...)
    Remove from this list   Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  3. Ms.Natasha Bailie - forthcoming - British Journal for the History of Mathematics.
    The reception of Newton's Principia in 1687 led to the attempt of many European scholars to ‘mathematicise' their field of expertise. An important example of this ‘mathematicisation' lies in the work of Irish-Scottish philosopher Francis Hutcheson, a key figure in the Scottish Enlightenment. This essay aims to discuss the mathematical aspects of Hutcheson's work and its impact on British thought in the following centuries, providing a case in point for the importance of the interactions between mathematics and philosophy throughout time.
    Remove from this list  
     
    Export citation  
     
    Bookmark   1 citation  
  4. Ian Hacking, Why Is There Philosophy of Mathematics at All? [REVIEW]Max Harris Siegel - forthcoming - Mind 124.
  5. Husserl's Philosophy of Mathematical Practice.Mirja Hartimo - 2024 - Cambridge University Press.
    Husserl’s Philosophy of Mathematical Practice explores the applicability of the phenomenological method to philosophy of mathematical practice. The first section elaborates on Husserl’s own understanding of the method of radical sense-investigation (Besinnung), with which he thought the mathematics ofhis time should be approached. The second section shows how Husserl himself practiced it in tracking both constructive and platonistic features in mathematical practice. Finally, the third section situates Husserlian phenomenology within the contemporary philosophy of mathematical practice, where the examined styles are (...)
    Remove from this list   Direct download  
     
    Export citation  
     
    Bookmark  
  6. A Taxonomy for Set-Theoretic Potentialism.Davide Sutto - 2024 - Philosophia Mathematica:1-28.
    Set-theoretic potentialism is one of the most lively trends in the philosophy of mathematics. Modal accounts of sets have been developed in two different ways. The first, initiated by Charles Parsons, focuses on sets as objects. The second, dating back to Hilary Putnam and Geoffrey Hellman, investigates set-theoretic structures. The paper identifies two strands of open issues, technical and conceptual, to clarify these two different, yet often conflated, views and categorize the potentialist approaches that have emerged in the contemporary debate. (...)
    Remove from this list   Direct download (4 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  7. Value Judgments in Mathematics: G. H. Hardy and the (Non-)seriousness of Mathematical Theorems.Simon Weisgerber - 2024 - Global Philosophy 34 (1):1-24.
    One of the general criteria G. H. Hardy identifies and discusses in his famous essay A Mathematician’s Apology (Cambridge University Press, Cambridge, 1940) by which a mathematician’s patterns must be judged is seriousness. This article focuses on one of Hardy’s examples of a non-serious theorem, namely that 8712 and 9801 are the only numbers below 10000 which are integral multiples of their reversals, in the sense that 8712 = 4·2178, and 9801 = 9·1089. In the context of a discussion of (...)
    Remove from this list   Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  8. A hub-and-spoke model of geometric concepts.Mario Bacelar Valente - 2023 - Theoria : An International Journal for Theory, History and Fundations of Science 38 (1):25-44.
    The cognitive basis of geometry is still poorly understood, even the ‘simpler’ issue of what kind of representation of geometric objects we have. In this work, we set forward a tentative model of the neural representation of geometric objects for the case of the pure geometry of Euclid. To arrive at a coherent model, we found it necessary to consider earlier forms of geometry. We start by developing models of the neural representation of the geometric figures of ancient Greek practical (...)
    Remove from this list   Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  9. Connecting the revolutionary with the conventional: Rethinking the differences between the works of Brouwer, Heyting, and Weyl.Kati Kish Bar-On - 2023 - Philosophy of Science 90 (3):580–602.
    Brouwer’s intuitionism was a far-reaching attempt to reform the foundations of mathematics. While the mathematical community was reluctant to accept Brouwer’s work, its response to later-developed brands of intuitionism, such as those presented by Hermann Weyl and Arend Heyting, was different. The paper accounts for this difference by analyzing the intuitionistic versions of Brouwer, Weyl, and Heyting in light of a two-tiered model of the body and image of mathematical knowledge. Such a perspective provides a richer account of each story (...)
    Remove from this list   Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  10. Mark Yakovlevich Vygodsky's Anniversary: Key Facts of the Biography and the List of His Key Publications.Oleg Gurov - 2023 - Artificial Societies 18 (3).
    The year 2023 celebrates the 125th anniversary of the birth of Mark Yakovlevich Vygodsky, a famous Soviet mathematician and pedagogue, one of the founders of the Soviet school of the history of mathematics. Not only the scientist's scientific achievements, but also his significant contribution to pedagogical theory and practice, allow us to describe him as a significant scientific figure of the twentieth century. His mathematics textbooks and reference books are reprinted almost annually, so that his ideas continue to influence educational (...)
    Remove from this list   Direct download  
     
    Export citation  
     
    Bookmark  
  11. Mathematics as a Theme in Phenomenology.Mirja Hartimo - 2023 - Encyclopedia of Phenomenology.
  12. Da Vinci’s Codex Atlanticus, fols. 395r and 686r-686v, refers to Leonardo Pisano volgarizzato, not to Giorgio Valla.Dominique Raynaud - 2023 - Historia Mathematica 64:1-18.
    This article aims at identifying the sources of fols. 395r and 686r-686v of the Codex Atlanticus. These anonymous folios, inserted in Leonardo da Vinci’s notebooks, do not deal with the duplication of the cube proper, nor do they derive from Giorgio Valla’s De expetendis et fugiendis rebus (1501), as has been claimed. They deal specifically with the extraction of the cube root by geometric methods. The analysis of the sources by the tracer method reveals that these fragments are taken from (...)
    Remove from this list   Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  13. From Philosophical Traditions to Scientific Developments: Reconsidering the Response to Brouwer’s Intuitionism.Kati Kish Bar-On - 2022 - Synthese 200 (6):1–25.
    Brouwer’s intuitionistic program was an intriguing attempt to reform the foundations of mathematics that eventually did not prevail. The current paper offers a new perspective on the scientific community’s lack of reception to Brouwer’s intuitionism by considering it in light of Michael Friedman’s model of parallel transitions in philosophy and science, specifically focusing on Friedman’s story of Einstein’s theory of relativity. Such a juxtaposition raises onto the surface the differences between Brouwer’s and Einstein’s stories and suggests that contrary to Einstein’s (...)
    Remove from this list   Direct download (4 more)  
     
    Export citation  
     
    Bookmark  
  14. Objectivity and Rigor in Classical Italian Algebraic Geometry.Silvia De Toffoli & Claudio Fontanari - 2022 - Noesis 38:195-212.
    The classification of algebraic surfaces by the Italian School of algebraic geometry is universally recognized as a breakthrough in 20th-century mathematics. The methods by which it was achieved do not, however, meet the modern standard of rigor and therefore appear dubious from a contemporary viewpoint. In this article, we offer a glimpse into the mathematical practice of the three leading exponents of the Italian School of algebraic geometry: Castelnuovo, Enriques, and Severi. We then bring into focus their distinctive conception of (...)
    Remove from this list   Direct download  
     
    Export citation  
     
    Bookmark   1 citation  
  15. Schopenhauers Logikdiagramme in den Mathematiklehrbüchern Adolph Diesterwegs.Jens Lemanski - 2022 - Siegener Beiträge Zur Geschichte Und Philosophie der Mathematik 16:97-127.
    Ein Beispiel für die Rezeption und Fortführung der schopenhauerschen Logik findet man in den Mathematiklehrbüchern Friedrich Adolph Wilhelm Diesterwegs (1790–1866), In diesem Aufsatz werden die historische und systematische Dimension dieser Anwendung von Logikdiagramme auf die Mathematik skizziert. In Kapitel 2 wird zunächst die frühe Rezeption der schopenhauerschen Logik und Philosophie der Mathematik vorgestellt. Dabei werden einige oftmals tradierte Vorurteile, die das Werk Schopenhauers betreffen, in Frage gestellt oder sogar ausgeräumt. In Kapitel 3 wird dann die Philosophie der Mathematik und der (...)
    Remove from this list   Direct download (3 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  16. An Okapi Hypothesis: Non-Euclidean Geometry and the Professional Expert in American Mathematics.Jemma Lorenat - 2022 - Isis 113 (1):85-107.
    Open Court began publishingThe Monistin 1890 as a journal“devotedto the philosophy of science”that regularly included mathematics. The audiencewas understood to be“cultured people who have not a technical mathematicaltraining”but nevertheless“have a mathematical penchant.”With these constraints,the mathematical content varied from recreations to logical foundations, but every-one had something to say about non-Euclidean geometry, in debates that rangedfrom psychology to semantics. The focus in this essay is on the contested value ofmathematical expertise in legitimating what should be considered as mathematics.While some mathematicians urgedThe (...)
    Remove from this list   Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  17. On V.A. Yankov’s Contribution to the History of Foundations of Mathematics.Ioannis M. Vandoulakis - 2022 - In Alex Citkin & Ioannis M. Vandoulakis, V.A. Yankov on Non-Classical Logics, History and Philosophy of Mathematics. Springer, Outstanding Contributions To Logic (volume 24). pp. 247-270.
    The paper examines Yankov’s contribution to the history of mathematical logic and the foundations of mathematics. It concerns the public communication of Markov’s critical attitude towards Brouwer’s intuitionistic mathematics from the point of view of his constructive mathematics and the commentary on A.S. Esenin-Vol’pin program of ultra-intuitionistic foundations of mathematics.
    Remove from this list   Direct download  
     
    Export citation  
     
    Bookmark  
  18. On V.A. Yankov’s Hypothesis of the Rise of Greek Mathematics.Ioannis M. Vandoulakis - 2022 - In Alex Citkin & Ioannis M. Vandoulakis, V.A. Yankov on Non-Classical Logics, History and Philosophy of Mathematics. Springer, Outstanding Contributions To Logic (volume 24). pp. 295-310.
    The paper examines the main points of Yankov’s hypothesis on the rise of Greek mathematics. The novelty of Yankov’s interpretation is that the rise of mathematics is examined within the context of the rise of ontological theories of the early Greek philosophers, which mark the beginning of rational thinking, as understood in the Western tradition.
    Remove from this list   Direct download  
     
    Export citation  
     
    Bookmark  
  19. Philip Beeley; Yelda Nasifoglu; Benjamin Wardhaugh (Editors). Reading Mathematics in Early Modern Europe: Studies in the Production, Collection, and Use of Mathematical Books. (Material Readings in Early Modern Culture.) 348 pp., illus. London: Routledge, 2020. $160 (cloth); ISBN 9780367609252. E-book available. [REVIEW]Lisa Wilde - 2022 - Isis 113 (1):181-182.
    Remove from this list   Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  20. Towards a new philosophical perspective on Hermann Weyl’s turn to intuitionism.Kati Kish Bar-On - 2021 - Science in Context 34 (1):51-68.
    The paper explores Hermann Weyl’s turn to intuitionism through a philosophical prism of normative framework transitions. It focuses on three central themes that occupied Weyl’s thought: the notion of the continuum, logical existence, and the necessity of intuitionism, constructivism, and formalism to adequately address the foundational crisis of mathematics. The analysis of these themes reveals Weyl’s continuous endeavor to deal with such fundamental problems and suggests a view that provides a different perspective concerning Weyl’s wavering foundational positions. Building on a (...)
    Remove from this list   Direct download (2 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  21. Bolzano’s Mathematical Infinite.Anna Bellomo & Guillaume Massas - 2021 - Review of Symbolic Logic:1-55.
    Bernard Bolzano (1781–1848) is commonly thought to have attempted to develop a theory of size for infinite collections that follows the so-called part–whole principle, according to which the whole is always greater than any of its proper parts. In this paper, we develop a novel interpretation of Bolzano’s mature theory of the infinite and show that, contrary to mainstream interpretations, it is best understood as a theory of infinite sums. Our formal results show that Bolzano’s infinite sums can be equipped (...)
    Remove from this list   Direct download (3 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  22. Mathematical Selves and the Shaping of Mathematical Modernism: Conflicting Epistemic Ideals in the Emergence of Enumerative Geometry.Nicolas Michel - 2021 - Isis 112 (1):68-92.
  23. Permanence as a Principle of Practice.Iulian D. Toader - 2021 - Historia Mathematica 54:77-94.
    The paper discusses Peano's defense and application of permanence of forms as a principle of mathematical practice. (Dedicated to the memory of Mic Detlefsen.).
    Remove from this list   Direct download  
     
    Export citation  
     
    Bookmark   5 citations  
  24. (1 other version)On the correctness of problem solving in ancient mathematical procedure texts.Mario Bacelar Valente - 2020 - Revista de Humanidades de Valparaíso 16:169-189.
    It has been argued in relation to Old Babylonian mathematical procedure texts that their validity or correctness is self-evident. One “sees” that the procedure is correct without it having, or being accompanied by, any explicit arguments for the correctness of the procedure. Even when agreeing with this view, one might still ask about how is the correctness of a procedure articulated? In this work, we present an articulation of the correctness of ancient Egyptian and Old Babylonian mathematical procedure texts – (...)
    Remove from this list   Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  25. From practical to pure geometry and back.Mario Bacelar Valente - 2020 - Revista Brasileira de História da Matemática 20 (39):13-33.
    The purpose of this work is to address the relation existing between ancient Greek practical geometry and ancient Greek pure geometry. In the first part of the work, we will consider practical and pure geometry and how pure geometry can be seen, in some respects, as arising from an idealization of practical geometry. From an analysis of relevant extant texts, we will make explicit the idealizations at play in pure geometry in relation to practical geometry, some of which are basically (...)
    Remove from this list   Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  26. On Archimedes’ statics.Mario Bacelar Valente - 2020 - Theoria. An International Journal for Theory, History and Foundations of Science 35 (2):235-242.
    Archimedes’ statics is considered as an example of ancient Greek applied mathematics; it is even seen as the beginning of mechanics. Wilbur Knorr made the case regarding this work, as other works by him or other mathematicians from ancient Greece, that it lacks references to the physical phenomena it is supposed to address. According to Knorr, this is understandable if we consider the propositions of the treatise in terms of purely mathematical elaborations suggested by quantitative aspects of the phenomena. In (...)
    Remove from this list   Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  27. Michael Brooks. The Quantum Astrologer’s Handbook: A History of the Renaissance Mathematics That Birthed Imaginary Numbers, Probability, and the New Physics of the Universe. 256 pp. Melbourne/London: Scribe Publications, 2017. $26 (cloth); ISBN 9781947534810. Paper and e-book available. [REVIEW]Howard G. Barth - 2020 - Isis 111 (4):874-875.
  28. Anthony Turner. Mathematical Instruments in the Collections of the Bibliothèque Nationale de France. 335 pp., bibl. London: Brepols, 2018. €150 (paper). Hardcover available. [REVIEW]Jim Bennett - 2020 - Isis 111 (3):647-648.
  29. Benjamin Wardhaugh. Gunpowder and Geometry: The Life of Charles Hutton: Pit Boy, Mathematician, and Scientific Rebel. 312 pp., bibl., notes, illus., index. London: William Collins, 2019. £20 (cloth). E-book available. [REVIEW]Victor D. Boantza - 2020 - Isis 111 (3):672-674.
  30. Proving Quadratic Reciprocity: Explanation, Disagreement, Transparency and Depth.William D’Alessandro - 2020 - Synthese (9):1-44.
    Gauss’s quadratic reciprocity theorem is among the most important results in the history of number theory. It’s also among the most mysterious: since its discovery in the late 18th century, mathematicians have regarded reciprocity as a deeply surprising fact in need of explanation. Intriguingly, though, there’s little agreement on how the theorem is best explained. Two quite different kinds of proof are most often praised as explanatory: an elementary argument that gives the theorem an intuitive geometric interpretation, due to Gauss (...)
    Remove from this list   Direct download (5 more)  
     
    Export citation  
     
    Bookmark   5 citations  
  31. David Aubin. L’élite sous la mitraille: Les normaliens, les mathématiques et la Grande Guerre 1900–1925. (Figures Normaliennes.) xi + 360 pp., notes, bibl., figs., tables, index. Paris: Éditions Rue d’Ulm, 2018. [REVIEW]Christophe Eckes - 2020 - Isis 111 (2):418-419.
    Remove from this list   Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  32. Hermann Cohen’s Principle of the Infinitesimal Method: A Defense.Scott Edgar - 2020 - Hopos: The Journal of the International Society for the History of Philosophy of Science 10 (2):440-470.
    In Bertrand Russell's 1903 Principles of Mathematics, he offers an apparently devastating criticism of the neo-Kantian Hermann Cohen's Principle of the Infinitesimal Method and its History (PIM). Russell's criticism is motivated by his concern that Cohen's account of the foundations of calculus saddles mathematics with the paradoxes of the infinitesimal and continuum, and thus threatens the very idea of mathematical truth. This paper defends Cohen against that objection of Russell's, and argues that properly understood, Cohen's views of limits and infinitesimals (...)
    Remove from this list   Direct download (3 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  33. Giorgio Israel (General Editor). Correspondence of Luigi Cremona (1830–1903): Conserved in the Department of Mathematics, “Sapienza” Università di Roma. 2 volumes. 1,824 pp., bibl., index. Turnhout: Brepols, 2017. €190 (cloth). [REVIEW]Angelo Guerraggio - 2020 - Isis 111 (3):683-684.
    Remove from this list   Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  34. Jacqueline Feke. Ptolemy’s Philosophy: Mathematics as a Way of Life. xi + 234 pp., illus., bibl., index. Princeton, N.J./Oxford: Princeton University Press, 2018. $39.50 (cloth); ISBN 9780691179582. Paper and e-book available. [REVIEW]Matthieu Husson - 2020 - Isis 111 (4):866-867.
  35. Brendan Dooley (Editor). The Continued Exercise of Reason: Public Addresses by George Boole. ix + 237 pp., notes, index. Cambridge, Mass./London: MIT Press, 2018. [REVIEW]Volker Peckhaus - 2020 - Isis 111 (3):682-683.
    Remove from this list   Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  36. From the four-color theorem to a generalizing “four-letter theorem”: A sketch for “human proof” and the philosophical interpretation.Vasil Penchev - 2020 - Logic and Philosophy of Mathematics eJournal (Elsevier: SSRN) 12 (21):1-10.
    The “four-color” theorem seems to be generalizable as follows. The four-letter alphabet is sufficient to encode unambiguously any set of well-orderings including a geographical map or the “map” of any logic and thus that of all logics or the DNA plan of any alive being. Then the corresponding maximally generalizing conjecture would state: anything in the universe or mind can be encoded unambiguously by four letters. That admits to be formulated as a “four-letter theorem”, and thus one can search for (...)
    Remove from this list   Direct download (5 more)  
     
    Export citation  
     
    Bookmark  
  37. Who Wants to Be a Mathematician? [REVIEW]Christopher J. Phillips - 2020 - Isis 111 (4):845-848.
    David Lindsay Roberts. Republic of Numbers: Unexpected Stories of Mathematical Americans through History. ix + 244 pp., bibl., index. Baltimore: Johns Hopkins University Press, 2019. $29.95 (cloth); ISBN 9781421433080. E-book available. Julian Havil. Curves for the Mathematically Curious: An Anthology of the Unpredictable, Historical, Beautiful, and Romantic. xx + 259 pp., apps., refs., index. Princeton, N.J./Oxford: Princeton University Press, 2019. $29.95 (cloth); ISBN 9780691180052. E-book available. David S. Richeson. Tales of Impossibility: The Two-Thousand-Year Quest to Solve the Mathematical Problems of (...)
    Remove from this list   Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  38. Essay on Machines in General (1786): Text, Translations and Commentaries. Lazare Carnot’s Mechanics—Volume 1.Raffaele Pisano, Jennifer Coopersmith & Murray Peake - 2020 - Springer.
    This book offers insights relevant to modern history and epistemology of physics, mathematics and, indeed, to all the sciences and engineering disciplines emerging of 19th century. This research volume is the first of a set of three Springer books on Lazare Nicolas Marguérite Carnot’s (1753–1823) remarkable work: Essay on Machines in General (Essai sur les machines en général [1783] 1786). The other two forthcoming volumes are: Principes fondamentaux de l’équilibre et du mouvement (1803) and Géométrie de position (1803). Lazare Carnot (...)
    Remove from this list   Direct download (3 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  39. Peter Roquette. The Riemann Hypothesis in Characteristic p in Historical Perspective. (History of Mathematics Subseries: Lecture Notes in Mathematics, 2222.) x + 233 pp., bibl., index. Cham, Switzerland: Springer, 2018. €47.95 (paper). ISBN 9783319990675. [REVIEW]Arkady Plotnitsky - 2020 - Isis 111 (2):411-412.
    Remove from this list   Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  40. The Axiom of Choice and the Road Paved by Sierpiński.Valérie Lynn Therrien - 2020 - Hopos: The Journal of the International Society for the History of Philosophy of Science 10 (2):504-523.
    From 1908 to 1916, articles supporting the axiom of choice were scant. The situation changed in 1916, when Wacław Sierpiński published a series of articles reviving the debate. The posterity of the axiom of choice as we know it would be unimaginable without Sierpiński’s efforts.
    Remove from this list   Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  41. Geometrical objects and figures in practical, pure, and applied geometry.Mario Bacelar Valente - 2020 - Disputatio. Philosophical Research Bulletin 9 (15):33-51.
    The purpose of this work is to address what notion of geometrical object and geometrical figure we have in different kinds of geometry: practical, pure, and applied. Also, we address the relation between geometrical objects and figures when this is possible, which is the case of pure and applied geometry. In practical geometry it turns out that there is no conception of geometrical object.
    Remove from this list   Direct download  
     
    Export citation  
     
    Bookmark   1 citation  
  42. William Boos. Metamathematics and the Philosophical Tradition. Edited by Florence S. Boos. 481 pp., bibl., indexes. Berlin/Boston: De Gruyter, 2018. $124.99 (cloth). [REVIEW]Lukas M. Verburgt - 2020 - Isis 111 (2):380-381.
  43. Are Euclid's Diagrams Representations? On an Argument by Ken Manders.David Waszek - 2020 - In Maria Zack & Dirk Schlimm, Research in History and Philosophy of Mathematics: The CSHPM 2018 Volume. New York, USA: Springer Verlag. pp. 115-127.
    In his well-known paper on Euclid’s geometry, Ken Manders sketches an argument against conceiving the diagrams of the Elements in ‘semantic’ terms, that is, against treating them as representations—resting his case on Euclid’s striking use of ‘impossible’ diagrams in some proofs by contradiction. This paper spells out, clarifies and assesses Manders’s argument, showing that it only succeeds against a particular semantic view of diagrams and can be evaded by adopting others, but arguing that Manders nevertheless makes a compelling case that (...)
    Remove from this list   Direct download  
     
    Export citation  
     
    Bookmark   1 citation  
  44. Euclid’s Kinds and (Their) Attributes.Benjamin Wilck - 2020 - History of Philosophy & Logical Analysis 23 (2):362-397.
    Relying upon a very close reading of all of the definitions given in Euclid’s Elements, I argue that this mathematical treatise contains a philosophical treatment of mathematical objects. Specifically, I show that Euclid draws elaborate metaphysical distinctions between substances and non-substantial attributes of substances, different kinds of substance, and different kinds of non-substance. While the general metaphysical theory adopted in the Elements resembles that of Aristotle in many respects, Euclid does not employ Aristotle’s terminology, or indeed, any philosophical terminology at (...)
    Remove from this list   Direct download (2 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  45. The Idea of Continuity as Mathematical-Philosophical Invariant.Eldar Amirov - 2019 - Metafizika 2 (4):87-100.
  46. Geometry of motion: some elements of its historical development.Mario Bacelar Valente - 2019 - ArtefaCToS. Revista de Estudios de la Ciencia y la Tecnología 8 (2):4-26.
    in this paper we return to Marshall Clagett’s view about the existence of an ancient Greek geometry of motion. It can be read in two ways. As a basic presentation of ancient Greek geometry of motion, followed by some aspects of its further development in landmark works by Galileo and Newton. Conversely, it can be read as a basic presentation of aspects of Galileo’s and Newton’s mathematics that can be considered as developments of a geometry of motion that was first (...)
    Remove from this list   Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  47. Lautman on problems as the conditions of existence of solutions.Simon B. Duffy - 2018 - Angelaki 23 (2):79-93.
    Albert Lautman (b. 1908–1944) was a philosopher of mathematics whose views on mathematical reality and on the philosophy of mathematics parted with the dominant tendencies of mathematical epistemology of the time. Lautman considered the role of philosophy, and of the philosopher, in relation to mathematics to be quite specific. He writes that: ‘in the development of mathematics, a reality is asserted that mathematical philosophy has as a function to recognize and describe’ (Lautman 2011, 87). He goes on to characterize this (...)
    Remove from this list   Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  48. Karine Chemla, Renaud Chorlay, and David Rabouin, eds. The Oxford Handbook of Generality in Mathematics and the Sciences. Oxford: Oxford University Press, 2016. Pp. xi+528. $150.00 ; $120.00. [REVIEW]Christophe Eckes - 2018 - Hopos: The Journal of the International Society for the History of Philosophy of Science 8 (1):214-217.
  49. Mathematics, core of the past and hope of the future.James Franklin - 2018 - In Catherine A. Runcie & David Brooks, Reclaiming Education: Renewing Schools and Universities in Contemporary Western Society. Edwin H. Lowe Publishing. pp. 149-162.
    Mathematics has always been a core part of western education, from the medieval quadrivium to the large amount of arithmetic and algebra still compulsory in high schools. It is an essential part. Its commitment to exactitude and to rigid demonstration balances humanist subjects devoted to appreciation and rhetoric as well as giving the lie to postmodernist insinuations that all “truths” are subject to political negotiation. In recent decades, the character of mathematics has changed – or rather broadened: it has become (...)
    Remove from this list   Direct download  
     
    Export citation  
     
    Bookmark  
  50. Religion and ideological confrontations in early Soviet mathematics: The case of P.A. Nekrasov.Dimitris Kilakos - 2018 - Almagest 9 (2):13-38.
    The influence of religious beliefs to several leading mathematicians in early Soviet years, especially among members of the Moscow Mathematical Society, had drawn the attention of militant Soviet marxists, as well as Soviet authorities. The issue has also drawn significant attention from scholars in the post-Soviet period. According to the currently prevailing interpretation, reported purges against Moscow mathematicians due to their religious inclination are the focal point of the relevant history. However, I maintain that historical data arguably offer reasons to (...)
    Remove from this list   Direct download  
     
    Export citation  
     
    Bookmark  
1 — 50 / 766