Abstract
In this paper, I discuss the problem raised by the non-Euclidean geometries for the Kantian claim that the axioms of Euclidean geometry are synthetic a priori, and hence necessarily true. Although the Kantian view of geometry faces a serious challenge from non-Euclidean geometries, there are some aspects of Kant’s view about geometry that can still be plausible. I argue that Euclidean geometry, as a science, cannot be synthetic a priori, but the empirical world can still be necessarily Euclidean.