Results for 'Conditional wave function'

1000+ found
Order:
  1.  7
    Wave Function Collapse in Retinal Structure Under Aided/Unaided Conditions.M. Galdamez Karla - 2017 - Cosmos and History 13 (2):126-140.
    No categories
    Direct download  
     
    Export citation  
     
    Bookmark  
  2.  16
    Can the wave function in configuration space be replaced by single-particle wave functions in physical space?Travis Norsen, Damiano Marian & Xavier Oriols - 2015 - Synthese 192 (10):3125-3151.
    The ontology of Bohmian mechanics includes both the universal wave function and particles. Proposals for understanding the physical significance of the wave function in this theory have included the idea of regarding it as a physically-real field in its 3N-dimensional space, as well as the idea of regarding it as a law of nature. Here we introduce and explore a third possibility in which the configuration space wave function is simply eliminated—replaced by a set (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   10 citations  
  3. Quantum States of a Time-Asymmetric Universe: Wave Function, Density Matrix, and Empirical Equivalence.Eddy Keming Chen - 2019 - Dissertation, Rutgers University - New Brunswick
    What is the quantum state of the universe? Although there have been several interesting suggestions, the question remains open. In this paper, I consider a natural choice for the universal quantum state arising from the Past Hypothesis, a boundary condition that accounts for the time-asymmetry of the universe. The natural choice is given not by a wave function but by a density matrix. I begin by classifying quantum theories into two types: theories with a fundamental wave (...) and theories with a fundamental density matrix. The Past Hypothesis is compatible with infinitely many initial wave functions, none of which seems to be particularly natural. However, once we turn to density matrices, the Past Hypothesis provides a natural choice---the normalized projection onto the Past Hypothesis subspace in the Hilbert space. Nevertheless, the two types of theories can be empirically equivalent. To provide a concrete understanding of the empirical equivalence, I provide a novel subsystem analysis in the context of Bohmian theories. Given the empirical equivalence, it seems empirically underdetermined whether the universe is in a pure state or a mixed state. Finally, I discuss some theoretical payoffs of the density-matrix theories and present some open problems for future research. (Bibliographic note: the thesis was submitted for the Master of Science in mathematics at Rutgers University.). (shrink)
    No categories
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   8 citations  
  4.  8
    A Pilot-Wave Approach to the Many-Body Problem: Beyond the Small Entanglement Approximation.Travis Norsen - 2022 - Foundations of Physics 52 (5):1-16.
    The de Broglie–Bohm pilot-wave theory provides an illuminating candidate solution to the philosophical problems that plague orthodox quantum theory. But the pilot-wave theory also has the potential to be of practical use to, for example, quantum chemists and condensed matter physicists who study many-body problems. In particular, the proprietary pilot-wave concept of the “conditional wave function” provides a novel perspective on and justification for a standard approach to many-body quantum systems in which the N-particle (...)
    No categories
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  5.  14
    On the Role of Density Matrices in Bohmian Mechanics.Detlef Dürr, Sheldon Goldstein, Roderich Tumulka & Nino Zanghí - 2005 - Foundations of Physics 35 (3):449-467.
    It is well known that density matrices can be used in quantum mechanics to represent the information available to an observer about either a system with a random wave function (“statistical mixture”) or a system that is entangled with another system (“reduced density matrix”). We point out another role, previously unnoticed in the literature, that a density matrix can play: it can be the “conditional density matrix,” conditional on the configuration of the environment. A precise definition (...)
    Direct download (7 more)  
     
    Export citation  
     
    Bookmark   21 citations  
  6.  12
    Standing Waves in the Lorentz-Covariant World.Y. S. Kim & Marilyn E. Noz - 2005 - Foundations of Physics 35 (7):1289-1305.
    When Einstein formulated his special relativity, he developed his dynamics for point particles. Of course, many valiant efforts have been made to extend his relativity to rigid bodies, but this subject is forgotten in history. This is largely because of the emergence of quantum mechanics with wave-particle duality. Instead of Lorentz-boosting rigid bodies, we now boost waves and have to deal with Lorentz transformations of waves. We now have some nderstanding of plane waves or running waves in the covariant (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark  
  7.  4
    Pilot-Wave Quantum Theory with a Single Bohm’s Trajectory.Francesco Avanzini, Barbara Fresch & Giorgio J. Moro - 2016 - Foundations of Physics 46 (5):575-605.
    The representation of a quantum system as the spatial configuration of its constituents evolving in time as a trajectory under the action of the wave-function, is the main objective of the de Broglie–Bohm theory. However, its standard formulation is referred to the statistical ensemble of its possible trajectories. The statistical ensemble is introduced in order to establish the exact correspondence between the probability density on the spatial configurations and the quantum distribution, that is the squared modulus of the (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark  
  8.  6
    A semiclassical interpretation of wave mechanics.Nathan Rosen - 1984 - Foundations of Physics 14 (7):579-605.
    The single-particle wave function ψ=ReiS/h has been interpreted classically: At a given point the particle momentum is ▽S, and the relative particle density in an ensemble is R 2 . It is first proposed to modify this interpretation by assuming that physical variables undergo rapid fluctuations, so that ▽S is the average of the momentum over a short time interval. However, it appears that this is not enough. It seems necessary to assume that the density also fluctuates. The (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  9.  3
    The wave equation with computable initial data whose unique solution is nowhere computable.Marian B. Pour-El & Ning Zhong - 1997 - Mathematical Logic Quarterly 43 (4):499-509.
    We give a rough statement of the main result. Let D be a compact subset of ℝ3× ℝ. The propagation u of a wave can be noncomputable in any neighborhood of any point of D even though the initial conditions which determine the wave propagation uniquely are computable. A precise statement of the result appears below.
    Direct download  
     
    Export citation  
     
    Bookmark   3 citations  
  10.  46
    Density Matrix Realism.Eddy Keming Chen - 2024
    Realism about quantum theory naturally leads to realism about the quantum state of the universe. It leaves open whether it is a pure state represented by a wave function, or an impure one represented by a density matrix. I characterize and elaborate on Density Matrix Realism, the thesis that the universal quantum state is objective but can be impure. To clarify the thesis, I compare it with Wave Function Realism, explain the conditions under which they are (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  11. Quantum Mechanics in a Time-Asymmetric Universe: On the Nature of the Initial Quantum State.Eddy Keming Chen - 2021 - British Journal for the Philosophy of Science 72 (4):1155–1183.
    In a quantum universe with a strong arrow of time, we postulate a low-entropy boundary condition to account for the temporal asymmetry. In this paper, I show that the Past Hypothesis also contains enough information to simplify the quantum ontology and define a unique initial condition in such a world. First, I introduce Density Matrix Realism, the thesis that the quantum universe is described by a fundamental density matrix that represents something objective. This stands in sharp contrast to Wave (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   30 citations  
  12. Time's Arrow in a Quantum Universe: On the Status of Statistical Mechanical Probabilities.Eddy Keming Chen - 2020 - In Valia Allori (ed.), Statistical Mechanics and Scientific Explanation: Determinism, Indeterminism and Laws of Nature. Singapore: World Scientific. pp. 479–515.
    In a quantum universe with a strong arrow of time, it is standard to postulate that the initial wave function started in a particular macrostate---the special low-entropy macrostate selected by the Past Hypothesis. Moreover, there is an additional postulate about statistical mechanical probabilities according to which the initial wave function is a ''typical'' choice in the macrostate. Together, they support a probabilistic version of the Second Law of Thermodynamics: typical initial wave functions will increase in (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   14 citations  
  13.  3
    Private Information and the 'Information Function': A Survey of Possible Uses. [REVIEW]Emmanuel Haven - 2008 - Theory and Decision 64 (2-3):193-228.
    Under certain conditions private information can be a source of trade. Arbitrage for instance can occur as a result of the existence of private information. In this paper we want to explicitly model information. To do so we define an ‘information function’. This information function is a mathematical object, also known as a so called ‘wave function’. We use the definition of wave function as it is used in quantum mechanics and we attempt to (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  14.  6
    Philosophical Genesis: The Three Waves and the City-Soul Analogy in Republic v.Charlotte C. S. Thomas & Kevin S. Honeycutt - 2018 - Polis 35 (1):164-185.
    It is conventional to argue that the city-soul analogy of Plato’s Republic dominates Books ii through iv and viii through x but is absent in Books v through vii. We argue that the analogy remains operative in Books v through vii and that its role there, especially as it is played out in the motif of the three waves, illuminates its function in the dialogue as a whole, particularly with respect to the questions: What are the natural dispositions of (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  15.  5
    Classical and Non-relativistic Limits of a Lorentz-Invariant Bohmian Model for a System of Spinless Particles.Sergio Hernández-Zapata & Ernesto Hernández-Zapata - 2010 - Foundations of Physics 40 (5):532-544.
    A completely Lorentz-invariant Bohmian model has been proposed recently for the case of a system of non-interacting spinless particles, obeying Klein-Gordon equations. It is based on a multi-temporal formalism and on the idea of treating the squared norm of the wave function as a space-time probability density. The particle’s configurations evolve in space-time in terms of a parameter σ with dimensions of time. In this work this model is further analyzed and extended to the case of an interaction (...)
    Direct download (6 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  16. Functionalising the wavefunction.Lorenzo Lorenzetti - 2022 - Studies in History and Philosophy of Science Part A 96 (C):141-153.
    Functionalism is the view that being x is to play the role of x. This paper defends a functionalist account of three-dimensional entities in the context of Wave Function Realism (WFR), that can explain in detail how we can recover three-dimensional entities out of the wavefunction. In particular, the essay advocates for a novel version of WFR in terms of a functional reductionist approach in the style of David Lewis. This account entails reduction of the upper entities to (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  17. Essays on the Metaphysics of Quantum Mechanics.Eddy Keming Chen - 2019 - Dissertation, Rutgers University, New Brunswick
    What is the proper metaphysics of quantum mechanics? In this dissertation, I approach the question from three different but related angles. First, I suggest that the quantum state can be understood intrinsically as relations holding among regions in ordinary space-time, from which we can recover the wave function uniquely up to an equivalence class (by representation and uniqueness theorems). The intrinsic account eliminates certain conventional elements (e.g. overall phase) in the representation of the quantum state. It also dispenses (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  18.  3
    A resolution of the classical wave-particle problem.J. P. Wesley - 1984 - Foundations of Physics 14 (2):155-170.
    The classical wave-particle problem is resolved in accord with Newton's concept of the particle nature of light by associating particle density and flux with the classical wave energy density and flux. Point particles flowing along discrete trajectories yield interference and diffraction patterns, as illustrated by Young's double pinhole interference. Bound particle motion is prescribed by standing waves. Particle motion as a function of time is presented for the case of a “particle in a box.” Initial conditions uniquely (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  19.  15
    Toward a quantitative description of large-scale neocortical dynamic function and EEG.Paul L. Nunez - 2000 - Behavioral and Brain Sciences 23 (3):371-398.
    A general conceptual framework for large-scale neocortical dynamics based on data from many laboratories is applied to a variety of experimental designs, spatial scales, and brain states. Partly distinct, but interacting local processes (e.g., neural networks) arise from functional segregation. Global processes arise from functional integration and can facilitate (top down) synchronous activity in remote cell groups that function simultaneously at several different spatial scales. Simultaneous local processes may help drive (bottom up) macroscopic global dynamics observed with electroencephalography (EEG) (...)
    Direct download (6 more)  
     
    Export citation  
     
    Bookmark   43 citations  
  20. The Wentaculus: Density Matrix Realism Meets the Arrow of Time.Eddy Keming Chen - manuscript
    Two of the most difficult problems in the foundations of physics are (1) what gives rise to the arrow of time and (2) what the ontology of quantum mechanics is. They are difficult because the fundamental dynamical laws of physics do not privilege an arrow of time, and the quantum-mechanical wave function describes a high-dimensional reality that is radically different from our ordinary experiences. -/- In this paper, I characterize and elaborate on the ``Wentaculus” theory, a new approach (...)
    Direct download  
     
    Export citation  
     
    Bookmark   2 citations  
  21.  11
    COVID-19 Vaccination under Conditions of War in Ukraine.Olena Korolchuk, Nataliia Vasiuk, Iryna Klymkova, Dmytro Shvets & Oleksii Piddubnyi - 2023 - Asian Bioethics Review 15 (3):259-281.
    The COVID-19 pandemic, which spread around the world in 2020, changed the lives of millions of people and affected the life and functioning of all countries and people without exception. With the emergence of the opportunity to be vaccinated against COVID-19, the problem of making a decision about vaccination also appeared. But it has become increasingly clear that the coronavirus is moving into the group of annual viral epidemic diseases that occur every year in different countries during the seasonal (...) of acute respiratory viral infections. The ongoing COVID-19 pandemic against the background of the adoption of serious quarantine measures indicates the need for large-scale vaccination of the population as the most effective way to protect against COVID-19. In this article, we pay special attention to vaccination, as the main factor in ensuring health, reducing the morbidity and severity of the course of the COVID-19 disease, and an important task of the state and modern public administration. (shrink)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  22.  89
    The Effect of Background Music on Inhibitory Functions: An ERP Study.Anja Burkhard, Stefan Elmer, Denis Kara, Christian Brauchli & Lutz Jäncke - 2018 - Frontiers in Human Neuroscience 12:374217.
    The influence of background music on cognitive functions is still a matter of debate. In this study, we investigated the influence of background music on executive functions (particularly on inhibitory functions). Participants completed a standardized cued Go/NoGo task during three different conditions while an EEG was recorded (1: with no background music, 2: with relaxing or 3: with exciting background music). In addition, we collected reaction times, omissions, and commissions in response to the Go and NoGo stimuli. From the EEG (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  23. The Wave-Function as a Multi-Field.Mario Hubert & Davide Romano - 2018 - European Journal for Philosophy of Science 8 (3):521-537.
    It is generally argued that if the wave-function in the de Broglie–Bohm theory is a physical field, it must be a field in configuration space. Nevertheless, it is possible to interpret the wave-function as a multi-field in three-dimensional space. This approach hasn’t received the attention yet it really deserves. The aim of this paper is threefold: first, we show that the wave-function is naturally and straightforwardly construed as a multi-field; second, we show why this (...)
    Direct download (10 more)  
     
    Export citation  
     
    Bookmark   35 citations  
  24.  20
    The Wave Function: Essays on the Metaphysics of Quantum Mechanics.Alyssa Ney & David Albert (eds.) - 2013 - , US: Oxford University Press USA.
    This is a new volume of original essays on the metaphysics of quantum mechanics. The essays address questions such as: What fundamental metaphysics is best motivated by quantum mechanics? What is the ontological status of the wave function? Does quantum mechanics support the existence of any other fundamental entities, e.g. particles? What is the nature of the fundamental space of quantum mechanics? What is the relationship between the fundamental ontology of quantum mechanics and ordinary, macroscopic objects like tables, (...)
  25.  18
    The Wave Function: Essays in the Metaphysics of Quantum Mechanics.Alyssa Ney & David Albert (eds.) - 2013 - , US: Oxford University Press.
    This is a new volume of original essays on the metaphysics of quantum mechanics. The essays address questions such as: What fundamental metaphysics is best motivated by quantum mechanics? What is the ontological status of the wave function? What is the nature of the fundamental space (or space-time manifold) of quantum mechanics?
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   94 citations  
  26.  18
    The meaning of the wave function: in search of the ontology of quantum mechanics.Shan Gao - 2017 - New York, NY, USA: Cambridge University Press.
    The meaning of the wave function has been a hot topic of debate since the early days of quantum mechanics. Recent years have witnessed a growing interest in this long-standing question. Is the wave function ontic, directly representing a state of reality, or epistemic, merely representing a state of knowledge, or something else? If the wave function is not ontic, then what, if any, is the underlying state of reality? If the wave (...) is indeed ontic, then exactly what physical state does it represent? In this book, I aim to make sense of the wave function in quantum mechanics and find the ontological content of the theory. The book can be divided into three parts. The first part addresses the question of the nature of the wave function. After giving a comprehensive and critical review of the competing views of the wave function, I present a new argument for the ontic view in terms of protective measurements. In addition, I also analyze the origin of the wave function by deriving the free Schroedinger equation. The second part analyzes the ontological meaning of the wave function. I propose a new ontological interpretation of the wave function in terms of random discontinuous motion of particles, and give two main arguments supporting this interpretation. The third part investigates whether the suggested quantum ontology is complete in accounting for our definite experience and whether it needs to be revised in the relativistic domain. (shrink)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   23 citations  
  27. Wave Function Ontology.Bradley Monton - 2002 - Synthese 130 (2):265-277.
    I argue that the wave function ontology for quantum mechanics is an undesirable ontology. This ontology holds that the fundamental space in which entities evolve is not three-dimensional, but instead 3N-dimensional, where N is the number of particles standardly thought to exist in three-dimensional space. I show that the state of three-dimensional objects does not supervene on the state of objects in 3N-dimensional space. I also show that the only way to guarantee the existence of the appropriate mental (...)
    Direct download (7 more)  
     
    Export citation  
     
    Bookmark   61 citations  
  28. Realism about the wave function.Eddy Keming Chen - 2019 - Philosophy Compass 14 (7):e12611.
    A century after the discovery of quantum mechanics, the meaning of quantum mechanics still remains elusive. This is largely due to the puzzling nature of the wave function, the central object in quantum mechanics. If we are realists about quantum mechanics, how should we understand the wave function? What does it represent? What is its physical meaning? Answering these questions would improve our understanding of what it means to be a realist about quantum mechanics. In this (...)
    Direct download (7 more)  
     
    Export citation  
     
    Bookmark   37 citations  
  29. A decoherence-based approach to the classical limit in Bohm's theory.Davide Romano - 2023 - Foundations of Physics 53 (41):1-27.
    The paper explains why the de Broglie-Bohm theory reduces to Newtonian mechanics in the macroscopic classical limit. The quantum-to-classical transition is based on three steps: (i) interaction with the environment produces effectively factorized states, leading to the formation of effective wave functions and hence decoherence; (ii) the effective wave functions selected by the environment–the pointer states of decoherence theory–will be well-localized wave packets, typically Gaussian states; (iii) the quantum potential of a Gaussian state becomes negligible under standard (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark  
  30. A Decoherence-Based Approach to the Classical Limit in Bohm’s Theory.Davide Romano - 2023 - Foundations of Physics 53 (2):1-27.
    The paper explains why the de Broglie–Bohm theory reduces to Newtonian mechanics in the macroscopic classical limit. The quantum-to-classical transition is based on three steps: (i) interaction with the environment produces effectively factorized states, leading to the formation of _effective wave functions_ and hence _decoherence_; (ii) the effective wave functions selected by the environment—the pointer states of decoherence theory—will be well-localized wave packets, typically Gaussian states; (iii) the quantum potential of a Gaussian state becomes negligible under standard (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark  
  31. Wave Function Realism.Alyssa Ney - manuscript
    This is an introduction to wave function realism for a compendium on the philosophy of quantum mechanics that will be edited and translated into Portuguese by Raoni Arroyo, entitled Compêndio de Filosofia da Física Quântica. This essay presents the history of wave function realism, its various interpretations, the main arguments that are given for the position, and the main objections that have been raised to it.
    Direct download  
     
    Export citation  
     
    Bookmark  
  32.  89
    Worlds in a Stochastic Universe: On the Emergence of World Histories in Minimal Bohmian Mechanics.Alexander Ehmann - 2020 - Dissertation, Lingnan University
    This thesis develops a detailed account of the emergence of for all practical purposes continuous, quasi-classical world histories from the discontinuous, stochastic micro dynamics of Minimal Bohmian Mechanics (MBM). MBM is a non-relativistic quantum theory. It results from excising the guiding equation from standard Bohmian Mechanics (BM) and reinterpreting the quantum equilibrium hypothesis as a stochastic guidance law for the random actualization of configurations of Bohmian particles. On MBM, there are no continuous trajectories linking up individual configurations. Instead, individual configurations (...)
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  33.  2
    Pannexins, distant relatives of the connexin family with specific cellular functions?Catheleyne D'hondt, Raf Ponsaerts, Humbert De Smedt, Geert Bultynck & Bernard Himpens - 2009 - Bioessays 31 (9):953-974.
    Intercellular communication (IC) is mediated by gap junctions (GJs) and hemichannels, which consist of proteins. This has been particularly well documented for the connexin (Cx) family. Initially, Cxs were thought to be the only proteins capable of GJ formation in vertebrates. About 10 years ago, however, a new GJ‐forming protein family related to invertebrate innexins (Inxs) was discovered in vertebrates, and named the pannexin (Panx) family. Panxs, which are structurally similar to Cxs, but evolutionarily distinct, have been shown to be (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  34. The wave function as a true ensemble.Jonte Hance & Sabine Hossenfelder - 2022 - Proceedings of the Royal Society 478 (2262).
    In quantum mechanics, the wavefunction predicts probabilities of possible measurement outcomes, but not which individual outcome is realised in each run of an experiment. This suggests that it describes an ensemble of states with different values of a hidden variable. Here, we analyse this idea with reference to currently known theorems and experiments. We argue that the ψ-ontic/epistemic distinction fails to properly identify ensemble interpretations and propose a more useful definition. We then show that all local ψ-ensemble interpretations which reproduce (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  35. On the Relationship Between Modelling Practices and Interpretive Stances in Quantum Mechanics.Quentin Ruyant - 2022 - Foundations of Science 27 (2):387-405.
    The purpose of this article is to establish a connection between modelling practices and interpretive approaches in quantum mechanics, taking as a starting point the literature on scientific representation. Different types of modalities play different roles in scientific representation. I postulate that the way theoretical structures are interpreted in this respect affects the way models are constructed. In quantum mechanics, this would be the case in particular of initial conditions and observables. I examine two formulations of quantum mechanics, the standard (...)
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark  
  36.  23
    Quantum Mechanics and Relational Realism.Michael Epperson - 2009 - Process Studies 38 (2):340-367.
    By the relational realist interpretation of wave function collapse, the quantum mechanical actualization of potentia is defined as a decoherence-driven process by which each actualization (in “orthodox” terms, each measurement outcome) is conditioned both by physical and logical relations with the actualities conventionally demarked as “environmental” or external to that particular outcome. But by the relational realist interpretation, the actualization-in-process is understood as internally related to these “enironmental” data per the formalism of quantum decoherence. The concept of “actualization (...)
    Direct download (7 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  37.  15
    Emergence of Time.George F. R. Ellis & Barbara Drossel - 2020 - Foundations of Physics 50 (3):161-190.
    Microphysical laws are time reversible, but macrophysics, chemistry and biology are not. This paper explores how this asymmetry arises due to the cosmological context, where a non-local Direction of Time is imposed by the expansion of the universe. This situation is best represented by an Evolving Block Universe, where local arrows of time emerge in concordance with the Direction of Time because a global Past Condition results in the Second Law of Thermodynamics pointing to the future. At the quantum level, (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   4 citations  
  38. Quantum-information conservation. The problem about “hidden variables”, or the “conservation of energy conservation” in quantum mechanics: A historical lesson for future discoveries.Vasil Penchev - 2020 - Energy Engineering (Energy) eJournal (Elsevier: SSRN) 3 (78):1-27.
    The explicit history of the “hidden variables” problem is well-known and established. The main events of its chronology are traced. An implicit context of that history is suggested. It links the problem with the “conservation of energy conservation” in quantum mechanics. Bohr, Kramers, and Slaters (1924) admitted its violation being due to the “fourth Heisenberg uncertainty”, that of energy in relation to time. Wolfgang Pauli rejected the conjecture and even forecast the existence of a new and unknown then elementary particle, (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  39.  75
    The case of quantum mechanics mathematizing reality: the “superposition” of mathematically modelled and mathematical reality: Is there any room for gravity?Vasil Penchev - 2020 - Cosmology and Large-Scale Structure eJournal (Elsevier: SSRN) 2 (24):1-15.
    A case study of quantum mechanics is investigated in the framework of the philosophical opposition “mathematical model – reality”. All classical science obeys the postulate about the fundamental difference of model and reality, and thus distinguishing epistemology from ontology fundamentally. The theorems about the absence of hidden variables in quantum mechanics imply for it to be “complete” (versus Einstein’s opinion). That consistent completeness (unlike arithmetic to set theory in the foundations of mathematics in Gödel’s opinion) can be interpreted furthermore as (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  40.  71
    A Model of Causal and Probabilistic Reasoning in Frame Semantics.Vasil Penchev - 2020 - Semantics eJournal (Elsevier: SSRN) 2 (18):1-4.
    Quantum mechanics admits a “linguistic interpretation” if one equates preliminary any quantum state of some whether quantum entity or word, i.e. a wave function interpret-able as an element of the separable complex Hilbert space. All possible Feynman pathways can link to each other any two semantic units such as words or term in any theory. Then, the causal reasoning would correspond to the case of classical mechanics (a single trajectory, in which any next point is causally conditioned), and (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark  
  41.  85
    Indeterminism in Quantum Mechanics: Beyond and/or Within.Vasil Penchev - 2020 - Development of Innovation eJournal (Elsevier: SSRN) 8 (68):1-5.
    The problem of indeterminism in quantum mechanics usually being considered as a generalization determinism of classical mechanics and physics for the case of discrete (quantum) changes is interpreted as an only mathematical problem referring to the relation of a set of independent choices to a well-ordered series therefore regulated by the equivalence of the axiom of choice and the well-ordering “theorem”. The former corresponds to quantum indeterminism, and the latter, to classical determinism. No other premises (besides the above only mathematical (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  42.  7
    Bohmian Mechanics is Not Deterministic.Klaas Landsman - 2022 - Foundations of Physics 52 (4):1-17.
    I argue that Bohmian mechanics cannot reasonably be claimed to be a deterministic theory. If one assumes the “quantum equilibrium distribution” provided by the wave function of the universe, Bohmian mechanics requires an external random oracle in order to describe the algorithmic randomness properties of typical outcome sequences of long runs of repeated identical experiments. This oracle lies beyond the scope of Bohmian mechanics, including the impossibility of explaining the randomness property in question from “random” initial conditions. Thus (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  43.  30
    The World in the Wave Function: A Metaphysics for Quantum Physics.Alyssa Ney - 2021 - New York, NY, USA: Oxford University Press.
    "What are the ontological implications of quantum theories, that is, what do they tell us about the fundamental objects that make up our world? How should quantum theories make us reevaluate our classical conceptions of the basic constitution of material objects and ourselves? Is there fundamental quantum nonlocality? This book articulates several rival approaches to answering these questions, ultimately defending the wave function realist approach. It is a way of interpreting quantum theories so that the central object they (...)
  44.  9
    Spin and Contextuality in Extended de Broglie-Bohm-Bell Quantum Mechanics.Jeroen C. Vink - 2022 - Foundations of Physics 52 (5):1-27.
    This paper introduces an extension of the de Broglie-Bohm-Bell formulation of quantum mechanics, which includes intrinsic particle degrees of freedom, such as spin, as elements of reality. To evade constraints from the Kochen-Specker theorem the discrete spin values refer to a specific basis – i.e., a single spin vector orientation for each particle; these spin orientations are, however, not predetermined, but dynamic and guided by the wave function of the system, which is conditional on the realized location (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  45. Determinism and Frankfurt Cases.Robert Allen - manuscript
    The indirect argument (IA) for incompatibilism is based on the principle that an action to which there is no alternative is unfree, which we shall call ‘PA’. According to PA, to freely perform an action A, it must not be the case that one has ‘no choice’ but to perform A. The libertarian and hard determinist advocates of PA must deny that free will would exist in a deterministic world, since no agent in such a world would perform an action (...)
    Direct download  
     
    Export citation  
     
    Bookmark  
  46. The Wave Function and Its Evolution.Shan Gao - 2011
    The meaning of the wave function and its evolution are investigated. First, we argue that the wave function in quantum mechanics is a description of random discontinuous motion of particles, and the modulus square of the wave function gives the probability density of the particles being in certain locations in space. Next, we show that the linear non-relativistic evolution of the wave function of an isolated system obeys the free Schrödinger equation due (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  47.  25
    Relativistic quantum becoming.Wayne C. Myrvold - 2003 - British Journal for the Philosophy of Science 54 (3):475-500.
    In a recent paper, David Albert has suggested that no quantum theory can yield a description of the world unfolding in Minkowski spacetime. This conclusion is premature; a natural extension of Stein's notion of becoming in Minkowski spacetime to accommodate the demands of quantum nonseparability yields such an account, an account that is in accord with a proposal which was made by Aharonov and Albert but which is dismissed by Albert as a ‘mere trick’. The nature of such an account (...)
    Direct download (11 more)  
     
    Export citation  
     
    Bookmark   29 citations  
  48.  69
    The Wave Function and Particle Ontology.Shan Gao - 2014
    In quantum mechanics, the wave function of a N-body system is a mathematical function defined in a 3N-dimensional configuration space. We argue that wave function realism implies particle ontology when assuming: (1) the wave function of a N-body system describes N physical entities; (2) each triple of the 3N coordinates of a point in configuration space that relates to one physical entity represents a point in ordinary three-dimensional space. Moreover, the motion of particles (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  49.  23
    Quantum Cosmology and Theism.Daniel Murphy - 2008 - Philo 11 (1):93-119.
    Quentin Smith has argued that quantum-cosmological theory is incompatible with theism. The two claims that Smith argues render theism inconsistent with Hawking’s theory are that of the initial creation of the universe by God and His continued conservation of it. His primary argument is that divine decision and Hawking’s wave function entail contradictory probabilities that the universe begin to exist and continue to evolve in a certain way. I attempt to refute the argument by providing a schema that (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  50. Scientific Realism without the Wave-Function: An Example of Naturalized Quantum Metaphysics.Valia Allori - 2020 - In Steven French & Juha Saatsi (eds.), Scientific Realism and the Quantum. Oxford: Oxford University Press.
    Scientific realism is the view that our best scientific theories can be regarded as (approximately) true. This is connected with the view that science, physics in particular, and metaphysics could (and should) inform one another: on the one hand, science tells us what the world is like, and on the other hand, metaphysical principles allow us to select between the various possible theories which are underdetermined by the data. Nonetheless, quantum mechanics has always been regarded as, at best, puzzling, if (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   4 citations  
1 — 50 / 1000