27 found
Order:
  1. On the Common Structure of Bohmian Mechanics and the Ghirardi–Rimini–Weber Theory Dedicated to GianCarlo Ghirardi on the occasion of his 70th birthday.Valia Allori, Sheldon Goldstein, Roderich Tumulka & Nino Zanghì - 2008 - British Journal for the Philosophy of Science 59 (3):353 - 389.
    Bohmian mechanics and the Ghirardi-Rimini-Weber theory provide opposite resolutions of the quantum measurement problem: the former postulates additional variables (the particle positions) besides the wave function, whereas the latter implements spontaneous collapses of the wave function by a nonlinear and stochastic modification of Schrödinger's equation. Still, both theories, when understood appropriately, share the following structure: They are ultimately not about wave functions but about 'matter' moving in space, represented by either particle trajectories, fields on space-time, or a discrete set of (...)
    Direct download (15 more)  
     
    Export citation  
     
    Bookmark   118 citations  
  2. Quantum Equilibrium and the Origin of Absolute Uncertainty.Detlef Durr, Sheldon Goldstein & Nino Zanghi - 1992 - Journal of Statistical Physics 67:843-907.
     
    Export citation  
     
    Bookmark   168 citations  
  3. Predictions and Primitive Ontology in Quantum Foundations: A Study of Examples.Valia Allori, Sheldon Goldstein, Roderich Tumulka & Nino Zanghì - 2014 - British Journal for the Philosophy of Science 65 (2):323-352.
    A major disagreement between different views about the foundations of quantum mechanics concerns whether for a theory to be intelligible as a fundamental physical theory it must involve a ‘primitive ontology’ (PO), i.e. variables describing the distribution of matter in four-dimensional space–time. In this article, we illustrate the value of having a PO. We do so by focusing on the role that the PO plays for extracting predictions from a given theory and discuss valid and invalid derivations of predictions. To (...)
    Direct download (10 more)  
     
    Export citation  
     
    Bookmark   43 citations  
  4. Quantum physics without quantum philosophy.Detlef Dürr, Sheldon Goldstein & Nino Zanghì - 1995 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 26 (2):137-149.
    Quantum philosophy, a peculiar twentieth-century malady, is responsible for most of the conceptual muddle plaguing the foundations of quantum physics. When this philosophy is eschewed, one naturally arrives at Bohmian mechanics, which is what emerges from Schrodinger's equation for a nonrelativistic system of particles when we merely insist that 'particles' means particles. While distinctly non-Newtonian, Bohmian mechanics is a fully deterministic theory of particles in motion, a motion choreographed by the wave function. The quantum formalism emerges when measurement situations are (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   79 citations  
  5. Many Worlds and Schrodinger's First Quantum Theory.Valia Allori, Sheldon Goldstein, Roderich Tumulka & Nino Zanghì - 2011 - British Journal for the Philosophy of Science 62 (1):1-27.
    Schrödinger’s first proposal for the interpretation of quantum mechanics was based on a postulate relating the wave function on configuration space to charge density in physical space. Schrödinger apparently later thought that his proposal was empirically wrong. We argue here that this is not the case, at least for a very similar proposal with charge density replaced by mass density. We argue that when analyzed carefully, this theory is seen to be an empirically adequate many-worlds theory and not an empirically (...)
    Direct download (11 more)  
     
    Export citation  
     
    Bookmark   43 citations  
  6.  34
    Quantum physics without quantum philosophy.Detlef Dürr, Sheldon Goldstein & Nino Zanghì - 1995 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 26 (2):137-149.
  7.  57
    Reality and the role of the wave function in quantum theory.Sheldon Goldstein & Nino Zanghi - unknown
    The most puzzling issue in the foundations of quantum mechanics is perhaps that of the status of the wave function of a system in a quantum universe. Is the wave function objective or subjective? Does it represent the physical state of the system or merely our information about the system? And if the former, does it provide a complete description of the system or only a partial description? We shall address these questions here mainly from a Bohmian perspective, and shall (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   47 citations  
  8. Bohmian mechanics.Roderich Tumulka, Detlef Durr, Sheldon Goldstein & Nino Zanghi - 2009 - Compendium of Quantum Physics.
    Bohmian mechanics is a theory about point particles moving along trajectories. It has the property that in a world governed by Bohmian mechanics, observers see the same statistics for experimental results as predicted by quantum mechanics. Bohmian mechanics thus provides an explanation of quantum mechanics. Moreover, the Bohmian trajectories are defined in a non-conspiratorial way by a few simple laws.
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   36 citations  
  9. Naive realism about operators.Martin Daumer, Detlef Dürr, Sheldon Goldstein & Nino Zanghì - 1996 - Erkenntnis 45 (2-3):379 - 397.
    A source of much difficulty and confusion in the interpretation of quantum mechanics is a naive realism about operators. By this we refer to various ways of taking too seriously the notion of operator-as-observable, and in particular to the all too casual talk about measuring operators that occurs when the subject is quantum mechanics. Without a specification of what should be meant by measuring a quantum observable, such an expression can have no clear meaning. A definite specification is provided by (...)
    Direct download (6 more)  
     
    Export citation  
     
    Bookmark   37 citations  
  10. Are all particles real?Sheldon Goldstein, James Taylor, Roderich Tumulka & Nino Zanghi - 2004 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 36 (1):103-112.
    In Bohmian mechanics elementary particles exist objectively, as point particles moving according to a law determined by a wavefunction. In this context, questions as to whether the particles of a certain species are real---questions such as, Do photons exist? Electrons? Or just the quarks?---have a clear meaning. We explain that, whatever the answer, there is a corresponding Bohm-type theory, and no experiment can ever decide between these theories. Another question that has a clear meaning is whether particles are intrinsically distinguishable, (...)
    Direct download (11 more)  
     
    Export citation  
     
    Bookmark   17 citations  
  11. On the Role of Density Matrices in Bohmian Mechanics.Detlef Dürr, Sheldon Goldstein, Roderich Tumulka & Nino Zanghí - 2005 - Foundations of Physics 35 (3):449-467.
    It is well known that density matrices can be used in quantum mechanics to represent the information available to an observer about either a system with a random wave function (“statistical mixture”) or a system that is entangled with another system (“reduced density matrix”). We point out another role, previously unnoticed in the literature, that a density matrix can play: it can be the “conditional density matrix,” conditional on the configuration of the environment. A precise definition can be given in (...)
    Direct download (7 more)  
     
    Export citation  
     
    Bookmark   20 citations  
  12. The message of the quantum?Martin Daumer, Detlef Duerr, Sheldon Goldstein, Tim Maudlin, Roderich Tumulka & Nino Zanghi - unknown
    We criticize speculations to the effect that quantum mechanics is fundamentally about information. We do this by pointing out how unfounded such speculations in fact are. Our analysis focuses on the dubious claims of this kind recently made by Anton Zeilinger.
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   6 citations  
  13. Seven Steps Toward the Classical World.Valia Allori, Detlef Duerr, Nino Zanghi & Sheldon Goldstein - 2002 - Journal of Optics B 4:482–488.
    Classical physics is about real objects, like apples falling from trees, whose motion is governed by Newtonian laws. In standard quantum mechanics only the wave function or the results of measurements exist, and to answer the question of how the classical world can be part of the quantum world is a rather formidable task. However, this is not the case for Bohmian mechanics, which, like classical mechanics, is a theory about real objects. In Bohmian terms, the problem of the classical (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   9 citations  
  14. What is Bohmian Mechanics.Valia Allori & Nino Zanghi - 2004 - International Journal of Theoretical Physics 43:1743-1755.
    Bohmian mechanics is a quantum theory with a clear ontology. To make clear what we mean by this, we shall proceed by recalling first what are the problems of quantum mechanics. We shall then briefly sketch the basics of Bohmian mechanics and indicate how Bohmian mechanics solves these problems and clarifies the status and the role of of the quantum formalism.
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   9 citations  
  15. On the Classical Limit of Quantum Mechanics.Valia Allori & Nino Zanghì - 2008 - Foundations of Physics 10.1007/S10701-008-9259-4 39 (1):20-32.
    Contrary to the widespread belief, the problem of the emergence of classical mechanics from quantum mechanics is still open. In spite of many results on the ¯h → 0 asymptotics, it is not yet clear how to explain within standard quantum mechanics the classical motion of macroscopic bodies. In this paper we shall analyze special cases of classical behavior in the framework of a precise formulation of quantum mechanics, Bohmian mechanics, which contains in its own structure the possibility of describing (...)
    Direct download (10 more)  
     
    Export citation  
     
    Bookmark   5 citations  
  16.  71
    La natura delle cose: introduzione ai fondamenti e alla filosofia della fisica.Valia Allori, Mauro Dorato, Federico Laudisa & Nino Zanghi (eds.) - 2005 - Roma: Carocci.
    The year 2005 has been named the World Year of Physics in recognition of the 100th anniversary of Albert Einstein's "Miracle Year," in which he published four landmark papers which had deep and great influence on the last and the current century: quantum theory, general relativity, and statistical mechanics. Despite the enormous importance that Einstein’s discoveries played in these theories, most physicists adopt a version of quantum theory which is incompatible with the idea that motivated Einstein in the first place. (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   5 citations  
  17.  42
    On the Classical Limit of Quantum Mechanics.Valia Allori & Nino Zanghì - 2009 - Foundations of Physics 39 (1):20-32.
    Contrary to the widespread belief, the problem of the emergence of classical mechanics from quantum mechanics is still open. In spite of many results on the ¯h → 0 asymptotics, it is not yet clear how to explain within standard quantum mechanics the classical motion of macroscopic bodies. In this paper we shall analyze special cases of classical behavior in the framework of a precise formulation of quantum mechanics, Bohmian mechanics, which contains in its own structure the possibility of describing (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   4 citations  
  18.  57
    The quantum formalism and the GRW formalism.Nino Zanghi - unknown
    The Ghirardi–Rimini–Weber (GRW) theory of spontaneous wave function collapse is known to provide a quantum theory without observers, in fact two different ones by using either the matter density ontology (GRWm) or the flash ontology (GRWf). Both theories are known to make predictions different from those of quantum mechanics, but the difference is so small that no decisive experiment can as yet be performed. While some testable deviations from quantum mechanics have long been known, we provide here something that has (...)
    Direct download  
     
    Export citation  
     
    Bookmark   4 citations  
  19.  52
    A global equilibrium as the foundation of quantum randomness.Detlef Dürr, Sheldon Goldstein & Nino Zanghí - 1993 - Foundations of Physics 23 (5):721-738.
    We analyze the origin of quantum randomness within the framework of a completely deterministic theory of particle motion—Bohmian mechanics. We show that a universe governed by this mechanics evolves in such a way as to give rise to the appearance of randomness, with empirical distributions in agreement with the predictions of the quantum formalism. Crucial ingredients in our analysis are the concept of the effective wave function of a subsystem and that of a random system. The latter is a notion (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   4 citations  
  20. E' completa la descrizione della realta' fisica fornita dalla meccanica quantistica?Valia Allori & Nino Zanghi - 2007 - Il Protagora 9:163-180.
    In this paper (in Italian) we discuss how quantum theories can be thought of as having the same structure. If so, even the theories that appear to be about the wave function are incomplete, even if in a way which is very different from the one Einstein proposed.
    Direct download  
     
    Export citation  
     
    Bookmark  
  21.  65
    Bohmian mechanics.Nino Zanghi - unknown
    Bohmian mechanics is a theory about point particles moving along trajectories. It has the property that in a world governed by Bohmian mechanics, observers see the same statistics for experimental results as predicted by quantum mechanics. Bohmian mechanics thus provides an explanation of quantum mechanics. Moreover, the Bohmian trajectories are defined in a non-conspiratorial way by a few simple laws.
    Direct download  
     
    Export citation  
     
    Bookmark   2 citations  
  22. Ontologie quantistiche di particelle, campi e lampi.Valia Allori & Nino Zanghi - 2007 - In Vincenzo Fano & Mauro Antonelli (eds.), "Strutture dello spazio tra fisica e psicologia" Teorie e Modelli XII, III. Pitagora. pp. 9-29.
    La meccanica quantistica è una delle più grandi conquiste intellettuali del xx secolo. Le sue leggiregolano il mondo atomico e subatomico e si riverberano su una miriade di fenomeni del mondomacroscopico, dalla formazione dei cristalli alla superconduttività, dalle proprietà dei fluidi a bassatemperatura agli spettri di emissione di una candela che brucia o di una supernova che esplode, daimeccanismi di combustione della fornace solare ai principi di base delle nanotecnologie. Non c’èquasi nulla nel mondo che ci circonda su cui non (...)
    Direct download  
     
    Export citation  
     
    Bookmark  
  23.  33
    Do Wave Functions Jump? Perspectives on the Work of GianCarlo Ghirardi.Valia Allori, Angelo Bassi, Detlef Duerr & Nino Zanghi (eds.) - 2020 - Springer.
    Book to honor the work of GianCarlo Ghirardi.
    Direct download  
     
    Export citation  
     
    Bookmark  
  24.  38
    Physics and the Nature of Reality: Essays in Memory of Detlef Dürr.Angelo Bassi, Sheldon Goldstein, Roderich Tumulka & Nino Zanghi (eds.) - 2024 - Springer.
    This volume commemorates the scientific contributions of Detlef Dürr (1951–2021) to foundational questions of physics. It presents new contributions from his former students, collaborators, and colleagues about their current research on topics inspired or influenced by Dürr. These topics are drawn from physics, mathematics, and philosophy of nature, and concern interpretations of quantum theory, new developments of Bohmian mechanics, the role of typicality, quantum physics in relativistic space-time, classical and quantum electrodynamics, and statistical mechanics. The volume thus also gives a (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  25.  27
    John bell across space and time.Nino Zanghi - manuscript
    This is a review of the book Quantum [Un]speakables: From Bell to Quantum Information. Reinhold A. Bertlmann and Anton Zeilinger (editors). xxii + 483 pp. Springer-Verlag, 2002. $89.95.
    Direct download  
     
    Export citation  
     
    Bookmark   1 citation  
  26. James Taylor's home page.Nino Zanghi - manuscript
    My new homepage is at jostylr.com . The corresponding e-mail address is [email protected] . On my new homepage there will be information about Bohmian mechanics, my papers, professional information, and personal information. As of 7/30/04, there is not much there, but it should improve.
     
    Export citation  
     
    Bookmark  
  27. Ontologie quantistiche di particelle, campi e lampi.Nino Zanghi - unknown
    La meccanica quantistica è una delle più grandi conquiste intellettuali del xx secolo. Le sue leggi regolano il mondo atomico e subatomico e si riverberano su una miriade di fenomeni del mondo macroscopico, dalla formazione dei cristalli alla superconduttività, dalle proprietà dei fluidi a bassa temperatura agli spettri di emissione di una candela che brucia o di una supernova che esplode, dai meccanismi di combustione della fornace solare ai principi di base delle nanotecnologie. Non c’è quasi nulla nel mondo che (...)
     
    Export citation  
     
    Bookmark