Results for 'long noncoding RNA'

1000+ found
Order:
  1.  11
    Non‐coding RNAs in Kawasaki disease: Molecular mechanisms and clinical implications.Fuqing Yang, Xiang Ao, Lin Ding, Lin Ye, Xuejuan Zhang, Lanting Yang, Zhonghao Zhao & Jianxun Wang - 2022 - Bioessays 44 (6):2100256.
    Kawasaki disease (KD) is an acute self‐limiting vasculitis with coronary complications, usually occurring in children. The incidence of KD in children is increasing year by year, mainly in East Asian countries, but relatively stably in Europe and America. Although studies on KD have been reported, the pathogenesis of KD is unknown. With the development of high‐throughput sequencing technology, growing number of regulatory noncoding RNAs (ncRNAs) including microRNA (miRNA), long noncoding RNA (lncRNA), and circular RNA (circRNA) have been (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  2.  27
    Single‐cell microinjection technology in cell biology.Yan Zhang & Long-Chuan Yu - 2008 - Bioessays 30 (6):606-610.
    Single‐cell microinjection has been successfully used to deliver exogenous proteins, cDNA constructs, peptides, drugs and particles into transfection‐challenged cells. With precisely controlled delivery dosage and timing, microinjection has been used in many studies of primary cultured cells, transgenic animal production, in vitro fertilization and RNA inference. This review discusses the advantages and limits of microinjection as a mechanical delivery method and its applications to attached and suspended cells. BioEssays 30:606–610, 2008. © 2008 Wiley Periodicals, Inc.
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  3.  21
    miRNA‐mediated crosstalk between transcripts: The missing “linc”?Jennifer Y. Tan & Ana C. Marques - 2016 - Bioessays 38 (3).
    Recently, transcriptome‐wide sequencing data have revealed the pervasiveness of intergenic long noncoding RNA (lncRNA) transcription. Subsets of lncRNAs have been demonstrated to crosstalk with and post‐transcriptionally regulate mRNAs in a microRNA (miRNA)‐dependent manner. Referred to as long noncoding competitive endogenous RNAs (lnceRNAs), these transcripts can contribute to diverse aspects of organismal and cellular biology, likely by providing a hitherto unrecognized layer of gene expression regulation. Here, we discuss the biological relevance of post‐transcriptional regulation by lnceRNAs, provide (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  4.  24
    Noncoding RNAs and chronic inflammation: Micro‐managing the fire within.Margaret Alexander & Ryan M. O'Connell - 2015 - Bioessays 37 (9):1005-1015.
    Inflammatory responses are essential for the clearance of pathogens and the repair of injured tissues; however, if these responses are not properly controlled chronic inflammation can occur. Chronic inflammation is now recognized as a contributing factor to many age‐associated diseases including metabolic disorders, arthritis, neurodegeneration, and cardiovascular disease. Due to the connection between chronic inflammation and these diseases, it is essential to understand underlying mechanisms behind this process. In this review, factors that contribute to chronic inflammation are discussed. Further, we (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark  
  5.  26
    Noncoding RNA‐guided recruitment of transcription factors: A prevalent but undocumented mechanism?Nara Lee & Joan A. Steitz - 2015 - Bioessays 37 (9):936-941.
    High‐fidelity binding of transcription factors (TFs) to DNA target sites is fundamental for proper regulation of cellular processes, as well as for the maintenance of cell identity. Recognition of cognate binding motifs in the genome is attributed by and large to the DNA binding domains of TFs. As an additional mode of conferring binding specificity, noncoding RNAs (ncRNAs) have been proposed to assist associated TFs in finding their binding sites by interacting with either DNA or RNA in the vicinity (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  6.  23
    Invertebrate models of spinal muscular atrophy: Insights into mechanisms and potential therapeutics.Stuart J. Grice, James N. Sleigh, Ji-Long Liu & David B. Sattelle - 2011 - Bioessays 33 (12):956-965.
    Invertebrate genetic models with their tractable neuromuscular systems are effective vehicles for the study of human nerve and muscle disorders. This is exemplified by insights made into spinal muscular atrophy (SMA) using the fruit fly Drosophila melanogaster and the nematode worm Caenorhabditis elegans. For speed and economy, these invertebrates offer convenient, whole‐organism platforms for genetic screening as well as RNA interference (RNAi) and chemical library screens, permitting the rapid testing of hypotheses related to disease mechanisms and the exploration of new (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  7.  20
    Evidence of Aberrant Immune Response by Endogenous Double‐Stranded RNAs: Attack from Within.Sujin Kim, Yongsuk Ku, Jayoung Ku & Yoosik Kim - 2019 - Bioessays 41 (7):1900023.
    Many innate immune response proteins recognize foreign nucleic acids from invading pathogens to initiate antiviral signaling. These proteins mostly rely on structural characteristics of the nucleic acids rather than their specific sequences to distinguish self and nonself. One feature utilized by RNA sensors is the extended stretch of double‐stranded RNA (dsRNA) base pairs. However, the criteria for recognizing nonself dsRNAs are rather lenient, and hairpin structure of self‐RNAs can also trigger an immune response. Consequently, aberrant activation of RNA sensors has (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  8.  6
    Keeping the balance: The noncoding RNA 7SK as a master regulator for neuron development and function.Michael Briese & Michael Sendtner - 2021 - Bioessays 43 (8):2100092.
    The noncoding RNA 7SK is a critical regulator of transcription by adjusting the activity of the kinase complex P‐TEFb. Release of P‐TEFb from 7SK stimulates transcription at many genes by promoting productive elongation. Conversely, P‐TEFb sequestration by 7SK inhibits transcription. Recent studies have shown that 7SK functions are particularly important for neuron development and maintenance and it can thus be hypothesized that 7SK is at the center of many signaling pathways contributing to neuron function. 7SK activates neuronal gene expression (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  9.  11
    Paraspeckle nuclear condensates: Global sensors of cell stress?Finn McCluggage & Archa H. Fox - 2021 - Bioessays 43 (5):2000245.
    Paraspeckles are nuclear condensates, or membranelees organelles, that are built on the long noncoding RNA, NEAT1, and have been linked to many diseases. Although originally described as constitutive structures, here, in reviewing this field, we develop the hypothesis that cells increase paraspeckle abundance as part of a general stress response, to aid pro‐survival pathways. Paraspeckles increase in many scenarios: when cells transform from one state to another, become infected with viruses and bacteria, begin to degenerate, under inflammation, in (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  10.  4
    From structure to function: Route to understanding lncRNA mechanism.Johannes Graf & Markus Kretz - 2020 - Bioessays 42 (12):2000027.
    RNAs have emerged as a major target for diagnostics and therapeutics approaches. Regulatory nonprotein‐coding RNAs (ncRNAs) in particular display remarkable versatility. They can fold into complex structures and interact with proteins, DNA, and other RNAs, thus modulating activity, localization, or interactome of multi‐protein complexes. Thus, ncRNAs confer regulatory plasticity and represent a new layer of regulatory control. Interestingly, long noncoding RNAs (lncRNAs) tend to acquire complex secondary and tertiary structures and their function—in many cases—is dependent on structural conservation (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  11.  22
    Long non‐coding RNA modifies chromatin.Alka Saxena & Piero Carninci - 2011 - Bioessays 33 (11):830-839.
    Common themes are emerging in the molecular mechanisms of long non‐coding RNA‐mediated gene repression. Long non‐coding RNAs (lncRNAs) participate in targeted gene silencing through chromatin remodelling, nuclear reorganisation, formation of a silencing domain and precise control over the entry of genes into silent compartments. The similarities suggest that these are fundamental processes of transcription regulation governed by lncRNAs. These findings have paved the way for analogous investigations on other lncRNAs and chromatin remodelling enzymes. Here we discuss these common (...)
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  12.  22
    Long non‐coding RNAs in cancer metabolism.Zhen-Dong Xiao, Li Zhuang & Boyi Gan - 2016 - Bioessays 38 (10):991-996.
    Altered cellular metabolism is an emerging hallmark of cancer. Accumulating recent evidence links long non‐coding RNAs (lncRNAs), a still poorly understood class of non‐coding RNAs, to cancer metabolism. Here we review the emerging findings on the functions of lncRNAs in cancer metabolism, with particular emphasis on how lncRNAs regulate glucose and glutamine metabolism in cancer cells, discuss how lncRNAs regulate various aspects of cancer metabolism through their cross‐talk with other macromolecules, explore the mechanistic conceptual framework of lncRNAs in reprogramming (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark  
  13.  25
    Long non‐coding RNAs in cancer metabolism.Zhen-Dong Xiao, Li Zhuang & Boyi Gan - 2016 - Bioessays 38 (10):991-996.
    Altered cellular metabolism is an emerging hallmark of cancer. Accumulating recent evidence links long non‐coding RNAs (lncRNAs), a still poorly understood class of non‐coding RNAs, to cancer metabolism. Here we review the emerging findings on the functions of lncRNAs in cancer metabolism, with particular emphasis on how lncRNAs regulate glucose and glutamine metabolism in cancer cells, discuss how lncRNAs regulate various aspects of cancer metabolism through their cross‐talk with other macromolecules, explore the mechanistic conceptual framework of lncRNAs in reprogramming (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  14.  19
    The long and the short of RNA maps.Jasmina Ponjavic & Chris P. Ponting - 2007 - Bioessays 29 (11):1077-1080.
    The landscapes of mammalian genomes are characterized by complex patterns of intersecting and overlapping sense and antisense transcription, giving rise to large numbers of coding and non‐protein‐coding RNAs (ncRNAs). A recent report by Kapranov and colleagues1 describes three potentially novel classes of RNAs located at the very edges of protein‐coding genes. The presence of RNAs from one of these classes appears to be correlated with the expression levels of their associated genes. These results suggest that a proportion of these RNAs (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  15.  64
    RNA regulation of epigenetic processes.John S. Mattick, Paulo P. Amaral, Marcel E. Dinger, Tim R. Mercer & Mark F. Mehler - 2009 - Bioessays 31 (1):51-59.
    There is increasing evidence that dynamic changes to chromatin, chromosomes and nuclear architecture are regulated by RNA signalling. Although the precise molecular mechanisms are not well understood, they appear to involve the differential recruitment of a hierarchy of generic chromatin modifying complexes and DNA methyltransferases to specific loci by RNAs during differentiation and development. A significant fraction of the genome-wide transcription of non-protein coding RNAs may be involved in this process, comprising a previously hidden layer of intermediary genetic information that (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   4 citations  
  16.  10
    How does noncoding transcription regulate Hox genes?Adelheid Lempradl & Leonie Ringrose - 2008 - Bioessays 30 (2):110-121.
    Noncoding RNA has arrived at centre stage in recent years with the discovery of “hidden transcriptomes” in many higher organisms. Over two decades ago, noncoding transcripts were discovered in Drosophila Hox complexes, but their function has remained elusive. Recent studies1-3 have examined the role of these noncoding RNAs in Hox gene regulation, and have generated a fierce debate as to whether the noncoding transcripts are important for silencing or activation. Here we review the evidence, and show (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  17.  29
    The non‐coding skin: Exploring the roles of long non‐coding RNAs in epidermal homeostasis and disease.Sonja Hombach & Markus Kretz - 2013 - Bioessays 35 (12):1093-1100.
    Long non‐coding RNAs (lncRNAs) have recently gained increasing attention because of their crucial roles in gene regulatory processes. Functional studies using mammalian skin as a model system have revealed their role in controlling normal tissue homeostasis as well as the transition to a diseased state. Here, we describe how lncRNAs regulate differentiation to preserve an undifferentiated epidermal progenitor compartment, and to maintain a functional skin permeability barrier. Furthermore, we will reflect on recent work analyzing the impact of lncRNAs on (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  18.  23
    Nonsense‐mediated RNA decay – a switch and dial for regulating gene expression.Jenna E. Smith & Kristian E. Baker - 2015 - Bioessays 37 (6):612-623.
    Nonsense‐mediated RNA decay (NMD) represents an established quality control checkpoint for gene expression that protects cells from consequences of gene mutations and errors during RNA biogenesis that lead to premature termination during translation. Characterization of NMD‐sensitive transcriptomes has revealed, however, that NMD targets not only aberrant transcripts but also a broad array of mRNA isoforms expressed from many endogenous genes. NMD is thus emerging as a master regulator that drives both fine and coarse adjustments in steady‐state RNA levels in the (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark  
  19.  11
    RNA at DNA Double‐Strand Breaks: The Challenge of Dealing with DNA:RNA Hybrids.Judit Domingo-Prim, Franziska Bonath & Neus Visa - 2020 - Bioessays 42 (5):1900225.
    RNA polymerase II is recruited to DNA double‐strand breaks (DSBs), transcribes the sequences that flank the break and produces a novel RNA type that has been termed damage‐induced long non‐coding RNA (dilncRNA). DilncRNAs can be processed into short, miRNA‐like molecules or degraded by different ribonucleases. They can also form double‐stranded RNAs or DNA:RNA hybrids. The DNA:RNA hybrids formed at DSBs contribute to the recruitment of repair factors during the early steps of homologous recombination (HR) and, in this way, contribute (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  20.  43
    RNA editing: a driving force for adaptive evolution?Willemijn M. Gommans, Sean P. Mullen & Stefan Maas - 2009 - Bioessays 31 (10):1137-1145.
    Genetic variability is considered a key to the evolvability of species. The conversion of an adenosine (A) to inosine (I) in primary RNA transcripts can result in an amino acid change in the encoded protein, a change in secondary structure of the RNA, creation or destruction of a splice consensus site, or otherwise alter RNA fate. Substantial transcriptome and proteome variability is generated by A‐to‐I RNA editing through site‐selective post‐transcriptional recoding of single nucleotides. We posit that this epigenetic source of (...)
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark   3 citations  
  21.  28
    Does RNA editing compensate for Alu invasion of the primate genome?Erez Y. Levanon & Eli Eisenberg - 2015 - Bioessays 37 (2):175-181.
    One of the distinctive features of the primate genome is the Alu element, a repetitive short interspersed element, over a million highly similar copies of which account for >10% of the genome. A direct consequence of this feature is that primates' transcriptome is highly enriched in long stable dsRNA structures, the preferred target of adenosine deaminases acting on RNAs (ADARs), which are the enzymes catalyzing A‐to‐I RNA editing. Indeed, A‐to‐I editing by ADARs is extremely abundant in primates: over a (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  22.  5
    A Kuhnian revolution in molecular biology: Most genes in complex organisms express regulatory RNAs.John S. Mattick - 2023 - Bioessays 45 (9):2300080.
    Thomas Kuhn described the progress of science as comprising occasional paradigm shifts separated by interludes of ‘normal science’. The paradigm that has held sway since the inception of molecular biology is that genes (mainly) encode proteins. In parallel, theoreticians posited that mutation is random, inferred that most of the genome in complex organisms is non‐functional, and asserted that somatic information is not communicated to the germline. However, many anomalies appeared, particularly in plants and animals: the strange genetic phenomena of paramutation (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  23.  48
    Challenging the dogma: the hidden layer of non-protein-coding RNAs in complex organisms.John S. Mattick - 2003 - Bioessays 25 (10):930-939.
    The central dogma of biology holds that genetic information normally flows from DNA to RNA to protein. As a consequence it has been generally assumed that genes generally code for proteins, and that proteins fulfil not only most structural and catalytic but also most regulatory functions, in all cells, from microbes to mammals. However, the latter may not be the case in complex organisms. A number of startling observations about the extent of non-protein-coding RNA (ncRNA) transcription in the higher eukaryotes (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   31 citations  
  24.  19
    The evolutionary significance of the long variable arm in transfer RNA.Feng-Jie Sun & Gustavo Caetano-Anollés - 2009 - Complexity 14 (5):26-39.
  25.  9
    CLIPing Staufen to secondary RNA structures: Size and location matter!Sandra M. Fernández Moya & Michael A. Kiebler - 2015 - Bioessays 37 (10):1062-1066.
    hiCLIP (RNA hybrid and individual‐nucleotide resolution ultraviolet cross‐linking and immunoprecipitation), is a novel technique developed by Sugimoto et al. (2015). Here, the use of different adaptors permits a controlled ligation of the two strands of a RNA duplex allowing the identification of each arm in the duplex upon sequencing. The authors chose a notoriously difficult to study double‐stranded RNA‐binding protein (dsRBP) termed Staufen1, a mammalian homolog of Drosophila Staufen involved in mRNA localization and translational control. Using hiCLIP, they discovered a (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  26.  4
    RNAs templating chromatin structure for dosage compensation in animals.Anton Wutz - 2003 - Bioessays 25 (5):434-442.
    The role of RNA as a messenger in the expression of the genome has been long appreciated, but its functions in regulating chromatin and chromosome structure are no less interesting. Recent results have shown that small RNAs guide chromatin‐modifying complexes to chromosomal regions in a sequence‐specific manner to elicit transcriptional repression. However, sequence‐specific targeting by means of base pairing seems to be only one mechanism by which RNA is employed for epigenetic regulation. The focus of this review is on (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  27.  14
    Graph-Based Analysis of RNA Secondary Structure Similarity Comparison.Lina Yang, Yang Liu, Xiaochun Hu, Patrick Wang, Xichun Li & Jun Wu - 2021 - Complexity 2021:1-15.
    In organisms, ribonucleic acid plays an essential role. Its function is being discovered more and more. Due to the conserved nature of RNA sequences, its function mainly depends on the RNA secondary structure. The discovery of an approximate relationship between two RNA secondary structures helps to understand their functional relationship better. It is an important and urgent task to explore structural similarities from the graphical representation of RNA secondary structures. In this paper, a novel graphical analysis method based on the (...)
    No categories
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  28.  55
    Non‐coding RNAs: Meet thy masters.Fabrício F. Costa - 2010 - Bioessays 32 (7):599-608.
    New DNA sequencing technologies have provided novel insights into eukaryotic genomes, epigenomes, and the transcriptome, including the identification of new non‐coding RNA (ncRNA) classes such as promoter‐associated RNAs and long RNAs. Moreover, it is now clear that up to 90% of eukaryotic genomes are transcribed, generating an extraordinary range of RNAs with no coding capacity. Taken together, these new discoveries are modifying the status quo in genomic science by demonstrating that the eukaryotic gene pool is divided into two distinct (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  29.  6
    The selfish environment meets the selfish gene: Coevolution and inheritance of RNA and DNA pools.Anthony P. Monaco - 2022 - Bioessays 44 (2):2100239.
    Throughout evolution, there has been interaction and exchange between RNA pools in the environment, and DNA and RNA pools of eukaryotic organisms. Metagenomic and metatranscriptomic sequencing of invertebrate hosts and their microbiota has revealed a rich evolutionary history of RNA virus shuttling between species. Horizontal transfer adapted the RNA pool for successful future interactions which lead to zoonotic transmission and detrimental RNA viral pandemics like SARS‐CoV2. In eukaryotes, noncoding RNA (ncRNA) is an established mechanism derived from prokaryotes to defend (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  30.  5
    Orchestrating ribosomal RNA folding during ribosome assembly.Michaela Oborská-Oplová, Stefan Gerhardy & Vikram Govind Panse - 2022 - Bioessays 44 (8):2200066.
    Construction of the eukaryotic ribosome is a complex process in which a nascent ribosomal RNA (rRNA) emerging from RNA Polymerase I hierarchically folds into a native three‐dimensional structure. Modular assembly of individual RNA domains through interactions with ribosomal proteins and a myriad of assembly factors permit efficient disentanglement of the error‐prone RNA folding process. Following these dynamic events, long‐range tertiary interactions are orchestrated to compact rRNA. A combination of genetic, biochemical, and structural studies is now providing clues into how (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  31.  5
    Poliovirus translation: A paradigm for a novel initiation mechanism.Nahum Sonenberg & Jerry Pelletier - 1989 - Bioessays 11 (5):128-132.
    All eukaryotic cellular mRNAs, and most viral mRNAs, are blocked at their 5′ ends with a cap structure (m7GpppX, where × is any nucleotide). Poliovirus, along with a small number of other animal and plant viral mRNAs, does not contain a 5′ cap structure. Since the cap structure functions to facilitate ribosome binding to mRNA, translation of poliovirus must proceed by a cap‐independent mechanism. Consistent with this, recent studies have shown that ribosomes can bind to an internal region within the (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  32.  24
    The double-stranded RNA binding domain of human Dicer functions as a nuclear localization signal.Michael Doyle, Lukas Badertscher, Lukasz Jaskiewicz, Stephan Güttinger, Sabine Jurado, Tabea Hugenschmidt, Ulrike Kutay & Witold Filipowicz - unknown
    Dicer is a key player in microRNA (miRNA) and RNA interference (RNAi) pathways, processing miRNA precursors and doublestranded RNA into ~21-nt-long products ultimately triggering sequence-dependent gene silencing. Although processing of substrates in vertebrate cells occurs in the cytoplasm, there is growing evidence suggesting Dicer is also present and functional in the nucleus. To address this possibility, we searched for a nuclear localization signal (NLS) in human Dicer and identified its C-terminal double-stranded RNA binding domain (dsRBD) as harboring NLS activity. (...)
    No categories
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  33.  7
    Negative CG dinucleotide bias: An explanation based on feedback loops between Arginine codon assignments and theoretical minimal RNA rings.Jacques Demongeot, Andrés Moreira & Hervé Seligmann - 2021 - Bioessays 43 (3):2000071.
    Theoretical minimal RNA rings are candidate primordial genes evolved for non‐redundant coding of the genetic code's 22 coding signals (one codon per biogenic amino acid, a start and a stop codon) over the shortest possible length: 29520 22‐nucleotide‐long RNA rings solve this min‐max constraint. Numerous RNA ring properties are reminiscent of natural genes. Here we present analyses showing that all RNA rings lack dinucleotide CG (a mutable, chemically instable dinucleotide coding for Arginine), bearing a resemblance to known CG‐depleted genomes. (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  34.  22
    The Uroboros Theory of Life’s Origin: 22-Nucleotide Theoretical Minimal RNA Rings Reflect Evolution of Genetic Code and tRNA-rRNA Translation Machineries.Jacques Demongeot & Hervé Seligmann - 2019 - Acta Biotheoretica 67 (4):273-297.
    Theoretical minimal RNA rings attempt to mimick life’s primitive RNAs. At most 25 22-nucleotide-long RNA rings code once for each biotic amino acid, a start and a stop codon and form a stem-loop hairpin, resembling consensus tRNAs. We calculated, for each RNA ring’s 22 potential splicing positions, similarities of predicted secondary structures with tRNA vs. rRNA secondary structures. Assuming rRNAs partly derived from tRNA accretions, we predict positive associations between relative secondary structure similarities with rRNAs over tRNAs and genetic (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   3 citations  
  35.  8
    The multifaceted h TR telomerase RNA from a structural perspective.Maya Raghunandan & Anabelle Decottignies - 2021 - Bioessays 43 (10):2100099.
    Human telomerase progressively emerged as a multifaceted ribonucleoprotein complex with additional functions beyond telomeric repeat synthesis. Both the hTERT catalytic subunit and the hTR long non‐coding RNA (lncRNA) subunit are engaged in highly regulated cellular pathways that, together, contribute to cell fitness and protection against apoptosis. We recently described a new role for hTR in regulating the abundance of replication protein A at telomeres, adding to the growing repertoire of hTR’s functions. Here, we focus on the non‐canonical roles of (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  36.  8
    One hundred million adenosine‐to‐inosine RNA editing sites: Hearing through the noise.Randi J. Ulbricht & Ronald B. Emeson - 2014 - Bioessays 36 (8):730-735.
    The most recent work toward compiling a comprehensive database of adenosine‐to‐inosine RNA editing events suggests that the potential for RNA editing is much more pervasive than previously thought; indeed, it is manifest in more than 100 million potential editing events located primarily within Alu repeat elements of the human transcriptome. Pairs of inverted Alu repeats are found in a substantial number of human genes, and when transcribed, they form long double‐stranded RNA structures that serve as optimal substrates for RNA (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  37.  4
    Spacers and processing of large ribosomal RNAs in Escherichia coli and mouse cells.D. Schlessinger, R. I. Bolla, R. Sirdeshmukh & J. R. Thomas - 1985 - Bioessays 3 (1):14-18.
    The formation of mature large rRNAs from larger primary transcripts is very different in bacterial and mammalian cells. In both, cotranscription can help to assure the coordinated production of various rRNA species. However, in bacteria, processing is ordered, initiated by cleavages at double‐stranded stems which enclose the mature sequences; several cleavages are required to produce each mature terminus; and the final steps occur in polysomes, apparently linked to continued protein synthesis. In mouse cells, in contrast, cleavages generate nearly all mature (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  38.  7
    ʻAql-i surkh: sharḥ va taʼvīl-i dāstānʹhā-yi ramzī-i Suhravardī.Taqī Pūrnāmdārīyān - 2011 - Tihrān: Intishārāt-i Sukhan. Edited by Yaḥyá ibn Ḥabash Suhrawardī.
  39.  18
    3′UTRs take a long shot in the brain.Li Wang & Rui Yi - 2014 - Bioessays 36 (1):39-45.
    The fast advancing RNA‐seq technology has unveiled an unexpected diversity and expression specificity of 3′ untranslated regions (3′UTRs) of mRNAs. In particular, neural mRNAs seem to express significantly longer 3′UTRs, some of which are over 10 kb in length. The extensive elongation of 3′UTRs in neural tissues provides intriguing possibilities for cell type‐specific regulations that are governed by miRNAs, RNA‐binding proteins and ribonucleoprotein aggregates. In this article, we review recent progress in the characterization of mRNA 3′UTRs and discuss their implications (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark  
  40. Epictetus: a Stoic and Socratic guide to life.A. A. Long - 2002 - New York: Oxford University Press.
    The philosophy of Epictetus, a freed slave in the Roman Empire, has been profoundly influential on Western thought: it offers not only stimulating ideas but practical guidance in living one's life. A. A. Long, a leading scholar of later ancient philosophy, gives the definitive presentation of the thought of Epictetus for a broad readership. Long's fresh and vivid translations of a selection of the best of Epictetus' discourses show that his ideas are as valuable and striking today as (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   45 citations  
  41. Hellenistic philosophy: Stoics, Epicureans, Sceptics.A. A. Long - 1986 - Berkeley: University of California Press.
    The purpose of this book is to trace the main developments in Greek philosophy during the period which runs from the death of Alexander the Great in 323 B.c. to the end of the Roman Republic. These three centuries, known to us as the Hellenistic Age, witnessed a vast expansion of Greek civilization eastwards, following Alexander's conquests; and later, Greek civilization penetrated deeply into the western Mediterranean world assisted by the political conquerors of Greece, the Romans. But philosophy throughout this (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   30 citations  
  42. The double solution of the theory of relativity.Julius Järnåker - 1970 - [Uppsala,: Almqvist & Wiksell.
     
    Export citation  
     
    Bookmark  
  43. Seneca on the self : why now?A. A. Long - 2009 - In Shadi Bartsch & David Wray (eds.), Seneca and the self. New York: Cambridge University Press.
  44.  22
    Plato's First Interpreters (review).A. A. Long - 2003 - Journal of the History of Philosophy 41 (1):121-122.
    In lieu of an abstract, here is a brief excerpt of the content:Journal of the History of Philosophy 41.1 (2003) 121-122 [Access article in PDF] Harold Tarrant. Plato's First Interpreters. Ithaca, NY: Cornell University Press, 2000. Pp. viii + 263. Cloth, $55.00. This is Tarrant's third book on the ancient Platonist tradition, following his Scepticism or Platonism? (1985) and Thrasyllan Platonism (1993). In those earlier volumes his focus was on the first centuries bc and ad. Here his scope is much (...)
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark  
  45.  9
    Ge ren jiao wang zhu ti xing yan jiu.Bolin Long - 2005 - [Guangzhou Shi]: Guangdong ren min chu ban she.
    个人主体性发展是当代人学研究的重要理论课题。本书从“主体性黄昏”问题入手,通过“特指还是泛指”的追问分析,认为走向黄昏的仅是工具性主宰下的个人主体性样态。.
    Direct download  
     
    Export citation  
     
    Bookmark  
  46.  10
    The process of microRNAs discovery.Paweł Kawalec - 2020 - Philosophical Problems in Science 68:219-242.
    The widespread particularist account of the onset of molecular biology that identifies it with the discovery of the DNA structure in 1953 has been recently contested. The paper contributes to this debate by focusing on a more recent discovery of small noncoding RNAs. First, it outlines a particularist account of the microRNAs discovery and the origins of the particularist predilection of the modern scientometric studies of science dynamics. Next, it discusses its limitations and proposes an alternative, modified processualist account (...)
    No categories
    Direct download  
     
    Export citation  
     
    Bookmark   1 citation  
  47. Plato's Apologies and Socrates in the Theaetetus.Anthony A. Long - 1997 - In Jyl Gentzler (ed.), Method in ancient philosophy. Oxford University Press UK. pp. 113--36.
  48.  20
    The Cambridge Companion to Early Greek Philosophy.A. A. Long (ed.) - 1999 - New York: Cambridge University Press.
    The Western tradition of philosophy began in Greece with a cluster of thinkers often called the Presocratics, whose influence has been incalculable. They include the early Ionian cosmologists, Pythagoras, Heraclitus, the Eleatics (Parmenides, Melissus, and Zeno), Empedocles, Anaxagoras, the atomists and the sophists. All these thinkers are discussed in this 1999 volume both as individuals and collectively in chapters on rational theology, epistemology, psychology, rhetoric and relativism, justice, and poetics. A chapter on causality extends the focus to include historians and (...)
    No categories
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   20 citations  
  49. Introduction to Ayn Rand’s Anthem.Roderick Long - 2012 - In Ayn Rand's Anthem.
  50. Clam Bank fomiations, westem Newfoundland. Geological Association of Canada.Long Point - 1965 - In Karl W. Linsenmann (ed.), Proceedings. St. Louis, Lutheran Academy for Scholarship. pp. 6--83.
    No categories
     
    Export citation  
     
    Bookmark  
1 — 50 / 1000