Results for 'quantum probabilistic rule'

1000+ found
Order:
  1.  19
    Hector freytes, Antonio ledda, Giuseppe sergioli and.Roberto Giuntini & Probabilistic Logics in Quantum Computation - 2013 - In Hanne Andersen, Dennis Dieks, Wenceslao González, Thomas Uebel & Gregory Wheeler (eds.), New Challenges to Philosophy of Science. Springer Verlag. pp. 49.
    Direct download  
     
    Export citation  
     
    Bookmark  
  2.  33
    On Relations Between Probabilities Under Quantum and Classical Measurements.Andrei Y. Khrennikov & Elena R. Loubenets - 2004 - Foundations of Physics 34 (4):689-704.
    We show that the so-called quantum probabilistic rule, usually introduced in the physical literature as an argument of the essential distinction between the probability relations under quantum and classical measurements, is not, as it is commonly accepted, in contrast to the rule for the addition of probabilities of mutually exclusive events. The latter is valid under all experimental situations upon classical and quantum systems. We discuss also the quantum measurement situation that is similar (...)
    Direct download (6 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  3. Relativity Theory may not have the last Word on the Nature of Time: Quantum Theory and Probabilism.Nicholas Maxwell - 2016 - In Giancarlo Ghirardi & Shyam Wuppuluri (eds.), Space, Time and the Limits of Human Understanding. Cham: Imprint: Springer. pp. 109-124.
    Two radically different views about time are possible. According to the first, the universe is three dimensional. It has a past and a future, but that does not mean it is spread out in time as it is spread out in the three dimensions of space. This view requires that there is an unambiguous, absolute, cosmic-wide "now" at each instant. According to the second view about time, the universe is four dimensional. It is spread out in both space and time (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark  
  4.  57
    Analysis of Wallace’s Proof of the Born Rule in Everettian Quantum Mechanics: Formal Aspects.André L. G. Mandolesi - 2018 - Foundations of Physics 48 (7):751-782.
    To solve the probability problem of the Many Worlds Interpretation of Quantum Mechanics, D. Wallace has presented a formal proof of the Born rule via decision theory, as proposed by D. Deutsch. The idea is to get subjective probabilities from rational decisions related to quantum measurements, showing the non-probabilistic parts of the quantum formalism, plus some rational constraints, ensure the squared modulus of quantum amplitudes play the role of such probabilities. We provide a new (...)
    Direct download (6 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  5.  91
    Everettian quantum mechanics and physical probability: Against the principle of “State Supervenience”.Lina Jansson - 2016 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 53:45-53.
    Everettian quantum mechanics faces the challenge of how to make sense of probability and probabilistic reasoning in a setting where there is typically no unique outcome of measurements. Wallace has built on a proof by Deutsch to argue that a notion of probability can be recovered in the many worlds setting. In particular, Wallace argues that a rational agent has to assign probabilities in accordance with the Born rule. This argument relies on a rationality constraint that Wallace (...)
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark   7 citations  
  6. Quantum mechanics as a theory of probability.Itamar Pitowsky - unknown
    We develop and defend the thesis that the Hilbert space formalism of quantum mechanics is a new theory of probability. The theory, like its classical counterpart, consists of an algebra of events, and the probability measures defined on it. The construction proceeds in the following steps: (a) Axioms for the algebra of events are introduced following Birkhoff and von Neumann. All axioms, except the one that expresses the uncertainty principle, are shared with the classical event space. The only models (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   38 citations  
  7. Quantum probability and many worlds.Meir Hemmo - 2007 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 38 (2):333-350.
    We discuss the meaning of probabilities in the many worlds interpretation of quantum mechanics. We start by presenting very briefly the many worlds theory, how the problem of probability arises, and some unsuccessful attempts to solve it in the past. Then we criticize a recent attempt by Deutsch to derive the quantum mechanical probabilities from the nonprobabilistic parts of quantum mechanics and classical decision theory. We further argue that the Born probability does not make sense even as (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   17 citations  
  8. Quantum mechanics and the concept of joint probability.Michael J. W. Hall - 1989 - Foundations of Physics 19 (2):189-207.
    The concepts of joint probability as implied by the Copenhagen and realist interpretations of quantum mechanics are examined in relation to (a) the rules for manipulation of probabilistic quantities, and (b) the role of the Bell inequalities in assessing the completeness of standard quantum theory. Proponents of completeness of the Copenhagen interpretation are required to accept a modification of the classical laws of probability to provide a mechanism for complementarity. A new formulation of the locality postulate is (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  9. Time's Arrow in a Quantum Universe: On the Status of Statistical Mechanical Probabilities.Eddy Keming Chen - 2020 - In Valia Allori (ed.), Statistical Mechanics and Scientific Explanation: Determinism, Indeterminism and Laws of Nature. World Scientific. pp. 479–515.
    In a quantum universe with a strong arrow of time, it is standard to postulate that the initial wave function started in a particular macrostate---the special low-entropy macrostate selected by the Past Hypothesis. Moreover, there is an additional postulate about statistical mechanical probabilities according to which the initial wave function is a ''typical'' choice in the macrostate. Together, they support a probabilistic version of the Second Law of Thermodynamics: typical initial wave functions will increase in entropy. Hence, there (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   14 citations  
  10.  98
    Three-Slit Experiments and Quantum Nonlocality.Gerd Niestegge - 2013 - Foundations of Physics 43 (6):805-812.
    An interesting link between two very different physical aspects of quantum mechanics is revealed; these are the absence of third-order interference and Tsirelson’s bound for the nonlocal correlations. Considering multiple-slit experiments—not only the traditional configuration with two slits, but also configurations with three and more slits—Sorkin detected that third-order (and higher-order) interference is not possible in quantum mechanics. The EPR experiments show that quantum mechanics involves nonlocal correlations which are demonstrated in a violation of the Bell or (...)
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  11.  98
    Spacetime quantum probabilities, relativized descriptions, and popperian propensities. Part I: Spacetime quantum probabilities. [REVIEW]Mioara Mugur-Schächter - 1991 - Foundations of Physics 21 (12):1387-1449.
    An integrated view concerning the probabilistic organization of quantum mechanics is obtained by systematic confrontation of the Kolmogorov formulation of the abstract theory of probabilities, with the quantum mechanical representationand its factual counterparts. Because these factual counterparts possess a peculiar spacetime structure stemming from the operations by which the observer produces the studied states (operations of state preparation) and the qualifications of these (operations of measurement), the approach brings forth “probability trees,” complex constructs with treelike spacetime support.Though (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  12. Deutsch on quantum decision theory.Peter J. Lewis - unknown
    A major problem facing no-collapse interpretations of quantum mechanics in the tradition of Everett is how to understand the probabilistic axiom of quantum mechanics (the Born rule) in the context of a deterministic theory in which every outcome of a measurement occurs. Deutsch claims to derive a decision-theoretic analogue of the Born rule from the non-probabilistic part of quantum mechanics and some non-probabilistic axioms of classical decision theory, and hence concludes that no (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   7 citations  
  13.  4
    The Formalisms of Quantum Mechanics: An Introduction.Francois David - 2015 - Cham: Imprint: Springer.
    These lecture notes present a concise and introductory, yet as far as possible coherent, view of the main formalizations of quantum mechanics and of quantum field theories, their interrelations and their theoretical foundations. The "standard" formulation of quantum mechanics (involving the Hilbert space of pure states, self-adjoint operators as physical observables, and the probabilistic interpretation given by the Born rule) on one hand, and the path integral and functional integral representations of probabilities amplitudes on the (...)
    No categories
    Direct download  
     
    Export citation  
     
    Bookmark  
  14. Logic, probability, and quantum theory.Arthur I. Fine - 1968 - Philosophy of Science 35 (2):101-111.
    The aim of this paper is to present and discuss a probabilistic framework that is adequate for the formulation of quantum theory and faithful to its applications. Contrary to claims, which are examined and rebutted, that quantum theory employs a nonclassical probability theory based on a nonclassical "logic," the probabilistic framework set out here is entirely classical and the "logic" used is Boolean. The framework consists of a set of states and a set of quantities that (...)
    Direct download (8 more)  
     
    Export citation  
     
    Bookmark   8 citations  
  15.  13
    Information-Theoretic Interpretation of Quantum Formalism.Michel Feldmann - 2023 - Foundations of Physics 53 (3):1-59.
    We present an information-theoretic interpretation of quantum formalism based on a Bayesian framework and devoid of any extra axiom or principle. Quantum information is construed as a technique for analyzing a logical system subject to classical constraints, based on a question-and-answer procedure. The problem is posed from a particular batch of queries while the constraints are represented by the truth table of a set of Boolean functions. The Bayesian inference technique consists in assigning a probability distribution within a (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  16.  17
    Betting on Quantum Objects.Jer Steeger - unknown
    Dutch book arguments have been applied to beliefs about the outcomes of measurements of quantum systems, but not to beliefs about quantum objects prior to measurement. In this paper, we prove a quantum version of the probabilists' Dutch book theorem that applies to both sorts of beliefs: roughly, if ideal beliefs are given by vector states, all and only Born-rule probabilities avoid Dutch books. This theorem and associated results have implications for operational and realist interpretations of (...)
    No categories
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark  
  17.  70
    Dieks' realistic interpretation of quantum mechanics: A comment.Howard Barnum - unknown
    D. Dieks has proposed a semantical rule which he claims yields a realistic interpretation of the formalism of quantum mechanics without the projection postulate. I argue that his proposal is unacceptable because it violates a natural requirement of psychophysical parallelism. His "semantical rule" is not an acceptable interpretive rule because it does not identify structures in the theory with structures in our experience, but postulates a merely probabilistic relationship between the two. Dieks' interpretation is contrasted (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  18.  61
    The underlying Brownian motion of nonrelativistic quantum mechanics.E. Santamato & B. H. Lavenda - 1981 - Foundations of Physics 11 (9-10):653-678.
    Nonrelativistic quantum mechanics can be derived from real Markov diffusion processes by extending the concept of probability measure to the complex domain. This appears as the only natural way of introducing formally classical probabilistic concepts into quantum mechanics. To every quantum state there is a corresponding complex Fokker-Planck equation. The particle drift is conditioned by an auxiliary equation which is obtained through stochastic energy conservation; the logarithmic transform of this equation is the Schrödinger equation. To every (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  19.  40
    Local Tomography and the Jordan Structure of Quantum Theory.Howard Barnum & Alexander Wilce - 2014 - Foundations of Physics 44 (2):192-212.
    Using a result of H. Hanche-Olsen, we show that (subject to fairly natural constraints on what constitutes a system, and on what constitutes a composite system), orthodox finite-dimensional complex quantum mechanics with superselection rules is the only non-signaling probabilistic theory in which (i) individual systems are Jordan algebras (equivalently, their cones of unnormalized states are homogeneous and self-dual), (ii) composites are locally tomographic (meaning that states are determined by the joint probabilities they assign to measurement outcomes on the (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  20. Probability in modal interpretations of quantum mechanics.Dennis Dieks - 2007 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 38 (2):292-310.
    Modal interpretations have the ambition to construe quantum mechanics as an objective, man-independent description of physical reality. Their second leading idea is probabilism: quantum mechanics does not completely fix physical reality but yields probabilities. In working out these ideas an important motif is to stay close to the standard formalism of quantum mechanics and to refrain from introducing new structure by hand. In this paper we explain how this programme can be made concrete. In particular, we show (...)
    Direct download (8 more)  
     
    Export citation  
     
    Bookmark   20 citations  
  21.  19
    Fermi’s Golden Rule and the Second Law of Thermodynamics.D. Braak & J. Mannhart - 2020 - Foundations of Physics 50 (11):1509-1540.
    We present a Gedankenexperiment that leads to a violation of detailed balance if quantum mechanical transition probabilities are treated in the usual way by applying Fermi’s “golden rule”. This Gedankenexperiment introduces a collection of two-level systems that absorb and emit radiation randomly through non-reciprocal coupling to a waveguide, as realized in specific chiral quantum optical systems. The non-reciprocal coupling is modeled by a hermitean Hamiltonian and is compatible with the time-reversal invariance of unitary quantum dynamics. Surprisingly, (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  22.  47
    Probability in modal interpretations of quantum mechanics.Dennis Dieks - 2007 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 38 (2):292-310.
    Modal interpretations have the ambition to construe quantum mechanics as an objective, man-independent description of physical reality. Their second leading idea is probabilism: quantum mechanics does not completely fix physical reality but yields probabilities. In working out these ideas an important motif is to stay close to the standard formalism of quantum mechanics and to refrain from introducing new structure by hand. In this paper we explain how this programme can be made concrete. In particular, we show (...)
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark   19 citations  
  23.  24
    The quantum probabilistic approach to the Foundations of Quantum Theory: Urns and Chameleons.Luigi Accardi - 1999 - In Roberto Giuntini, Maria Luisa Dalla Chiara & Federico Laudisa (eds.), Language, Quantum, Music. pp. 95.
  24.  36
    The quantum probabilistic approach to the foundations of quantum theory: urns and chamaleons.Luigi Accardi - 1999 - In Maria Luisa Dalla Chiara (ed.), Language, Quantum, Music. pp. 95--104.
  25.  45
    Probabilistic rule-based argumentation for norm-governed learning agents.Régis Riveret, Antonino Rotolo & Giovanni Sartor - 2012 - Artificial Intelligence and Law 20 (4):383-420.
    This paper proposes an approach to investigate norm-governed learning agents which combines a logic-based formalism with an equation-based counterpart. This dual formalism enables us to describe the reasoning of such agents and their interactions using argumentation, and, at the same time, to capture systemic features using equations. The approach is applied to norm emergence and internalisation in systems of learning agents. The logical formalism is rooted into a probabilistic defeasible logic instantiating Dung’s argumentation framework. Rules of this logic are (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   5 citations  
  26. A Path from the Quantization of the Action Variable to Quantum Mechanical Formalism.V. Hushwater - 1998 - Foundations of Physics 28 (2):167-184.
    Starting from the quantization of the action variable as a basic principle, I show that this leads one to the probabilistic description of physical quantities as random variables, which satisfy the uncertainty relation. Using such variables I show that the ensemble-averaged action variable in the quantum domain can be presented as a contour integral of a “quantum momentum function,” pq(z), which is assumed to be analytic. The condition that all bound states pq(z) must yield the quantized values (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark  
  27.  73
    Bell's theorem, inference, and quantum transactions.A. J. M. Garrett - 1990 - Foundations of Physics 20 (4):381-402.
    Bell's theorem is expounded as an analysis in Bayesian inference. Assuming the result of a spin measurement on a particle is governed by a causal variable internal (hidden, “local”) to the particle, one learns about it by making a spin measurement; thence about the internal variable of a second particle correlated with the first; and from there predicts the probabilistic result of spin measurements on the second particle. Such predictions are violated by experiment: locality/causality fails. The statistical nature of (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  28.  28
    At what time does a quantum experiment have a result?Thomas Pashby - unknown
    This paper provides a general method for defining a generalized quantum observable that supplies properly normalized conditional probabilities for the time of occurrence. This method treats the time of occurrence as a probabilistic variable whose value is to be determined by experiment and predicted by the Born rule. This avoids the problematic assumption that a question about the time at which an event occurs must be answered through instantaneous measurements of a projector by an observer, common to (...)
    No categories
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark  
  29. Could Inelastic Interactions Induce Quantum Probabilistic Transitions?Nicholas Maxwell - 2017 - In Shan Gao (ed.), Collapse of the Wave Function. Cambridge: Cambridge University Press. pp. 257-273.
    What are quantum entities? Is the quantum domain deterministic or probabilistic? Orthodox quantum theory (OQT) fails to answer these two fundamental questions. As a result of failing to answer the first question, OQT is very seriously defective: it is imprecise, ambiguous, ad hoc, non-explanatory, inapplicable to the early universe, inapplicable to the cosmos as a whole, and such that it is inherently incapable of being unified with general relativity. It is argued that probabilism provides a very (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark  
  30.  26
    Quantum deduction rules.Pavel Pudlák - 2009 - Annals of Pure and Applied Logic 157 (1):16-29.
    We define propositional quantum Frege proof systems and compare them with classical Frege proof systems.
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark  
  31.  10
    The refinement of probabilistic rule sets: Sociopathic interactions.David C. Wilkins & Yong Ma - 1994 - Artificial Intelligence 70 (1-2):1-32.
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  32.  91
    Gleason-Type Derivations of the Quantum Probability Rule for Generalized Measurements.Carlton M. Caves, Christopher A. Fuchs, Kiran K. Manne & Joseph M. Renes - 2004 - Foundations of Physics 34 (2):193-209.
    We prove a Gleason-type theorem for the quantum probability rule using frame functions defined on positive-operator-valued measures, as opposed to the restricted class of orthogonal projection-valued measures used in the original theorem. The advantage of this method is that it works for two-dimensional quantum systems and even for vector spaces over rational fields—settings where the standard theorem fails. Furthermore, unlike the method necessary for proving the original result, the present one is rather elementary. In the case of (...)
    Direct download (8 more)  
     
    Export citation  
     
    Bookmark   13 citations  
  33.  15
    The implicit possibility of dualism in quantum probabilistic cognitive modeling.Donald Mender - 2013 - Behavioral and Brain Sciences 36 (3):298-299.
  34. Quantum probability from subjective likelihood: Improving on Deutsch's proof of the probability rule.David Wallace - 2007 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 38 (2):311-332.
    I present a proof of the quantum probability rule from decision-theoretic assumptions, in the context of the Everett interpretation. The basic ideas behind the proof are those presented in Deutsch's recent proof of the probability rule, but the proof is simpler and proceeds from weaker decision-theoretic assumptions. This makes it easier to discuss the conceptual ideas involved in the proof, and to show that they are defensible.
    Direct download (14 more)  
     
    Export citation  
     
    Bookmark   64 citations  
  35. Does probabilism solve the great quantum mystery?Nicholas Maxwell - 2010 - Theoria: Revista de Teoría, Historia y Fundamentos de la Ciencia 19 (3):321-336.
    I put forward a micro realistic, probabilistic version of quantum theory, which specifies the precise nature of quantum entities thus solving the quantum wave/particle dilemma, and which both reproduces the empirical success of orthodox quantum theory, and yields predictions that differ from orthodox quantum theory for as yet unperformed experiments.
    Direct download (10 more)  
     
    Export citation  
     
    Bookmark   8 citations  
  36.  27
    Probabilistic Knowledge as Objective Knowledge in Quantum Mechanics: Potential Powers Instead of Actual Properties.Christian de Ronde - unknown
    In classical physics, probabilistic or statistical knowledge has been always related to ignorance or inaccurate subjective knowledge about an actual state of affairs. This idea has been extended to quantum mechanics through a completely incoherent interpretation of the Fermi-Dirac and Bose-Einstein statistics in terms of "strange" quantum particles. This interpretation, naturalized through a widespread "way of speaking" in the physics community, contradicts Born's physical account of Ψ as a "probability wave" which provides statistical information about outcomes that, (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   16 citations  
  37. Probabilistic coherence and proper scoring rules.Joel Predd, Robert Seiringer, Elliott Lieb, Daniel Osherson, H. Vincent Poor & Sanjeev Kulkarni - 2009 - IEEE Transactions on Information Theory 55 (10):4786-4792.
    We provide self-contained proof of a theorem relating probabilistic coherence of forecasts to their non-domination by rival forecasts with respect to any proper scoring rule. The theorem recapitulates insights achieved by other investigators, and clarifi es the connection of coherence and proper scoring rules to Bregman divergence.
    Direct download  
     
    Export citation  
     
    Bookmark   68 citations  
  38.  95
    The probabilistic argument for a non-classical logic of quantum mechanics.Patrick Suppes - 1966 - Philosophy of Science 33 (1/2):14-21.
    The aim of this paper is to state the single most powerful argument for use of a non-classical logic in quantum mechanics. In outline the argument is the following. The working logic of a science is the logic of the events and propositions to which probabilities are assigned. A probability should be assigned to every element of the algebra of events. In the case of quantum mechanics probabilities may be assigned to events but not, without restriction, to the (...)
    Direct download (8 more)  
     
    Export citation  
     
    Bookmark   20 citations  
  39. Particle Creation as the Quantum Condition for Probabilistic Events to Occur.Nicholas Maxwell - 1994 - Physics Letters A 187 (2 May 1994):351-355.
    A new version of quantum theory is proposed, according to which probabilistic events occur whenever new statioinary or bound states are created as a result of inelastic collisions. The new theory recovers the experimental success of orthodox quantum theory, but differs form the orthodox theory for as yet unperformed experiments.
    Direct download  
     
    Export citation  
     
    Bookmark   10 citations  
  40.  24
    Probabilistic logic of quantum observations.A. Sernadas, J. Rasga, C. Sernadas, L. Alcácer & A. B. Henriques - 2019 - Logic Journal of the IGPL 27 (3):328-370.
    A probabilistic propositional logic, endowed with a constructor for asserting compatibility of diagonalisable and bounded observables, is presented and illustrated for reasoning about the random results of projective measurements made on a given quantum state. Simultaneous measurements are assumed to imply that the underlying observables are compatible. A sound and weakly complete axiomatisation is provided relying on the decidable first-order theory of real closed ordered fields. The proposed logic is proved to be a conservative extension of classical propositional (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  41.  17
    Fast quantum algorithms for handling probabilistic and interval uncertainty.Vladik Kreinovich & Luc Longpré - 2004 - Mathematical Logic Quarterly 50 (4-5):405-416.
    In many real-life situations, we are interested in the value of a physical quantity y that is difficult or impossible to measure directly. To estimate y, we find some easier-to-measure quantities x1, … , xn which are related to y by a known relation y = f. Measurements are never 100% accurate; hence, the measured values equation image are different from xi, and the resulting estimate equation image is different from the desired value y = f. How different can it (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  42. Probabilistic semantics for orthologic and quantum logic.Charles G. Morgan - 1983 - Logique Et Analyse 26 (103-104):323-339.
     
    Export citation  
     
    Bookmark  
  43.  21
    Probabilistic theories: What is special about quantum mechanics?Giacomo Mauro D'Ariano - 2010 - In Alisa Bokulich & Gregg Jaeger (eds.), Philosophy of quantum information and entanglement. New York: Cambridge University Press.
  44.  21
    Probabilistic Inequalities And Upper Probabilities In Quantum Mechanical Entanglement.J. De Barros & Patrick Suppes - 2010 - Manuscrito 33 (1):55-71.
    In this paper we analyze the existence of joint probabilities for the Bell-type and GHZ entangled states. We then propose the usage of nonmonotonic upper probabilities as a tool to derive consistent joint upper probabilities for the contextual hidden variables. Finally, we show that for the extreme example of no error, the GHZ state allows for the definition of a joint upper probability that is consistent with the strong correlations.
    Direct download  
     
    Export citation  
     
    Bookmark   2 citations  
  45. Rules and Meaning in Quantum Mechanics.Iulian D. Toader - manuscript
    This book concerns the metasemantics of quantum mechanics (QM). Roughly, it pursues an investigation at an intersection of the philosophy of physics and the philosophy of semantics, and it offers a critical analysis of rival explanations of the semantic facts of standard QM. Two problems for such explanations are discussed: categoricity and permanence of rules. New results include 1) a reconstruction of Einstein's incompleteness argument, which concludes that a local, separable, and categorical QM cannot exist, 2) a reinterpretation of (...)
    Direct download  
     
    Export citation  
     
    Bookmark  
  46.  34
    From probabilistic topologies to Feynman diagrams: Hans Reichenbach on time, genidentity, and quantum physics.Michael Stöltzner - 2022 - Synthese 200 (4):1-26.
    Hans Reichenbach’s posthumous book The Direction of Time ends somewhere between Socratic aporia and historical irony. Prompted by Feynman’s diagrammatic formulation of quantum electrodynamics, Reichenbach eventually abandoned the delicate balancing between the macroscopic foundation of the direction of time and microscopic descriptions of time order undertaken throughout the previous chapters in favor of an exclusively macroscopic theory that he had vehemently rejected in the 1920s. I analyze Reichenbach’s reasoning against the backdrop of the history of Feynman diagrams and the (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  47.  46
    A probabilistic approach to quantum mechanics based on tomograms.Michele Caponigro, Stefano Mancini & Vladimir I. Man'ko - unknown
    It is usually believed that a picture of Quantum Mechanics in terms of true probabilities cannot be given due to the uncertainty relations. Here we discuss a tomographic approach to quantum states that leads to a probability representation of quantum states. This can be regarded as a classical-like formulation of quantum mechanics which avoids the counterintuitive concepts of wave function and density operator. The relevant concepts of quantum mechanics are then reconsidered and the epistemological implications (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  48.  38
    A probabilistic analysis of the difficulties of unifying quantum mechanics with the theory of relativity.Manfred Neumann - 1978 - Foundations of Physics 8 (9-10):721-733.
    A procedure is given for the transformation of quantum mechanical operator equations into stochastic equations. The stochastic equations reveal a simple correlation between quantum mechanics and classical mechanics: Quantum mechanics operates with “optimal estimations,” classical mechanics is the limit of “complete information.” In this connection, Schrödinger's substitution relationsp x → -iħ ∂/∂x, etc, reveal themselves as exact mathematical transformation formulas. The stochastic version of quantum mechanical equations provides an explanation for the difficulties in correlating quantum (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  49.  98
    Rules of probability in quantum mechanics.Leon Cohen - 1988 - Foundations of Physics 18 (10):983-998.
    We show that the quantum mechanical rules for manipulating probabilities follow naturally from standard probability theory. We do this by generalizing a result of Khinchin regarding characteristic functions. From standard probability theory we obtain the methods usually associated with quantum theory; that is, the operator method, eigenvalues, the Born rule, and the fact that only the eigenvalues of the operator have nonzero probability. We discuss the general question as to why quantum mechanics seemingly necessitates different methods (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  50.  66
    Quantum logic and the luders rule.Allen Stairs - 1982 - Philosophy of Science 49 (3):422-436.
    In a recent paper, Michael Friedman and Hilary Putnam argued that the Luders rule is ad hoc from the point of view of the Copenhagen interpretation but that it receives a natural explanation within realist quantum logic as a probability conditionalization rule. Geoffrey Hellman maintains that quantum logic cannot give a non-circular explanation of the rule, while Jeffrey Bub argues that the rule is not ad hoc within the Copenhagen interpretation. As I see it, (...)
    Direct download (8 more)  
     
    Export citation  
     
    Bookmark   10 citations  
1 — 50 / 1000