Quantum mechanics as a theory of probability

Abstract

We develop and defend the thesis that the Hilbert space formalism of quantum mechanics is a new theory of probability. The theory, like its classical counterpart, consists of an algebra of events, and the probability measures defined on it. The construction proceeds in the following steps: (a) Axioms for the algebra of events are introduced following Birkhoff and von Neumann. All axioms, except the one that expresses the uncertainty principle, are shared with the classical event space. The only models for the set of axioms are lattices of subspaces of inner product spaces over a field K. (b) Another axiom due to Soler forces K to be the field of real, or complex numbers, or the quaternions. We suggest a probabilistic reading of Soler's axiom. (c) Gleason's theorem fully characterizes the probability measures on the algebra of events, so that Born's rule is derived. (d) Gleason's theorem is equivalent to the existence of a certain finite set of rays, with a particular orthogonality graph (Wondergraph). Consequently, all aspects of quantum probability can be derived from rational probability assignments to finite "quantum gambles". (e) All experimental aspects of entanglement- the violation of Bell's inequality in particular- are explained as natural outcomes of the probabilistic structure. (f) We hypothesize that even in the absence of decoherence macroscopic entanglement can very rarely be observed, and provide a precise conjecture to that effect .We also discuss the relation of the present approach to quantum logic, realism and truth, and the measurement problem.

Links

PhilArchive



    Upload a copy of this work     Papers currently archived: 91,386

External links

Setup an account with your affiliations in order to access resources via your University's proxy server

Through your library

  • Only published works are available at libraries.

Similar books and articles

Quantum probability and many worlds.Meir Hemmo - 2007 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 38 (2):333-350.
Betting on the outcomes of measurements: A bayesian theory of quantum probability.Itamar Pitowsky - 2002 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 34 (3):395-414.

Analytics

Added to PP
2009-01-28

Downloads
304 (#64,070)

6 months
22 (#118,559)

Historical graph of downloads
How can I increase my downloads?

Citations of this work

Entropy - A Guide for the Perplexed.Roman Frigg & Charlotte Werndl - 2011 - In Claus Beisbart & Stephan Hartmann (eds.), Probabilities in Physics. Oxford University Press. pp. 115-142.
Two dogmas about quantum mechanics.Jeffrey Bub & Itamar Pitowsky - 2007 - In Simon Saunders, Jonathan Barrett, Adrian Kent & David Wallace (eds.), Many Worlds?: Everett, Quantum Theory & Reality. Oxford University Press.
Dissolving the measurement problem is not an option for the realist.Matthias Egg - 2019 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 66:62-68.
Quantum probabilities as degrees of belief.Jeffrey Bub - 2007 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 38 (2):232-254.

View all 34 citations / Add more citations