Results for 'Weyl reformulation of quantum mechanics'

1000+ found
Order:
  1.  64
    Following Weyl on Quantum Mechanics: The Contribution of Ettore Majorana. [REVIEW]A. Drago & S. Esposito - 2004 - Foundations of Physics 34 (5):871-887.
    After a quick historical account of the introduction of the group-theoretical description of quantum mechanics in terms of symmetries, as proposed by Weyl, we examine some unpublished papers by Ettore Majorana. Remarkable results achieved by him in frontier research topics as well as in physics teaching point out that the Italian physicist can be well considered as a follower of Weyl in his reformulation of quantum mechanics.
    Direct download (8 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  2.  14
    A Machian Reformulation of Quantum Mechanics.Kostas Glampedakis - 2022 - Foundations of Physics 52 (2):1-13.
    The widely known but also somewhat esoteric Mach principle envisages a fully relational formulation of physical theories without any reference to a concept of ‘absolute space’. When applied to classical mechanics, under the guise of an extended symmetry group, this procedure is known to lead to an equation of motion with inertial-like forces that are sourced by the mass distribution of the system itself. In this paper we follow a similar procedure and reformulate the Schrödinger equation of non-relativistic (...) mechanics in a fully Machian way. Just like its classical counterpart, the resulting quantum theory is fully relational in the positions and momenta of the bodies comprising a given physical system, leaving no room for the notion of absolute space. (shrink)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  3. Why special relativity should not be a template for a fundamental reformulation of quantum mechanics.Harvey R. Brown & Christopher G. Timpson - 2006 - In William Demopoulos & Itamar Pitowsky (eds.), Physical Theory and its Interpretation. Springer. pp. 29-42.
    In a comparison of the principles of special relativity and of quantum mechanics, the former theory is marked by its relative economy and apparent explanatory simplicity. A number of theorists have thus been led to search for a small number of postulates - essentially information theoretic in nature - that would play the role in quantum mechanics that the relativity principle and the light postulate jointly play in Einstein's 1905 special relativity theory. The purpose of the (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   12 citations  
  4. The consistent histories interpretation of quantum mechanics.Edward MacKinnon - unknown
    The consistent histories reformulation of quantum mechanics was developed by Robert Griffiths, given a formal logical systematization by Roland Omn\`{e}s, and under the label `decoherent histories', was independently developed by Murray Gell-Mann and James Hartle and extended to quantum cosmology. Criticisms of CH involve issues of meaning, truth, objectivity, and coherence, a mixture of philosophy and physics. We will briefly consider the original formulation of CH and some basic objections. The reply to these objections, like the (...)
    Direct download (6 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  5. Schrödinger's interpretation of quantum mechanics and the relevance of Bohr's experimental critique.Slobodan Perovic - 2006 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 37 (2):275-297.
    E. Schrödinger's ideas on interpreting quantum mechanics have been recently re-examined by historians and revived by philosophers of quantum mechanics. Such recent re-evaluations have focused on Schrödinger's retention of space–time continuity and his relinquishment of the corpuscularian understanding of microphysical systems. Several of these historical re-examinations claim that Schrödinger refrained from pursuing his 1926 wave-mechanical interpretation of quantum mechanics under pressure from the Copenhagen and Göttingen physicists, who misinterpreted his ideas in their dogmatic pursuit (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   7 citations  
  6. What is Orthodox Quantum Mechanics?David Wallace - 2019 - In Alberto Cordero (ed.), Philosophers Look at Quantum Mechanics. Springer Verlag.
    What is called ``orthodox'' quantum mechanics, as presented in standard foundational discussions, relies on two substantive assumptions --- the projection postulate and the eigenvalue-eigenvector link --- that do not in fact play any part in practical applications of quantum mechanics. I argue for this conclusion on a number of grounds, but primarily on the grounds that the projection postulate fails correctly to account for repeated, continuous and unsharp measurements and that the eigenvalue-eigenvector link implies that virtually (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   21 citations  
  7. Dirac’s Refined Unification of Quantum Mechanics and Special Relativity: An Intertheoretic Context.Rinat M. Nugayev - 2022 - Teorie Vědy / Theory of Science 44 (1):37-57.
    One of the key episodes of history of modern physics – Paul Dirac’s startling contrivance of the relativistic theory of the electron – is elicited in the context of lucid epistemological model of mature theory change. The peculiar character of Dirac’s synthesis of special relativity and quantum mechanics is revealed by comparison with Einstein’s sophisticated methodology of the General Relativity contrivance. The subtle structure of Dirac’s scientific research program and first and foremost the odd principles that put up (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  8. Decoherence in unorthodox formulations of quantum mechanics.Vassilios Karakostas & Michael Dickson - 1995 - Synthese 102 (1):61 - 97.
    The conceptual structure of orthodox quantum mechanics has not provided a fully satisfactory and coherent description of natural phenomena. With particular attention to the measurement problem, we review and investigate two unorthodox formulations. First, there is the model advanced by GRWP, a stochastic modification of the standard Schrödinger dynamics admitting statevector reduction as a real physical process. Second, there is the ontological interpretation of Bohm, a causal reformulation of the usual theory admitting no collapse of the statevector. (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   6 citations  
  9.  56
    The zitterbewegung interpretation of quantum mechanics.David Hestenes - 1990 - Foundations of Physics 20 (10):1213-1232.
    Thezitterbewegung is a local circulatory motion of the electron presumed to be the basis of the electron spin and magnetic moment. A reformulation of the Dirac theory shows that thezitterbewegung need not be attributed to interference between positive and negative energy states as originally proposed by Schroedinger. Rather, it provides a physical interpretation for the complex phase factor in the Dirac wave function generally. Moreover, it extends to a coherent physical interpretation of the entire Dirac theory, and it implies (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   21 citations  
  10.  44
    Do Dispositions and Propensities have a role in the Ontology of Quantum Mechanics? Some Critical Remarks.Mauro Dorato - unknown - Synthese Library.
    In order to tackle the question posed by the title – notoriously answered in the positive, among others, by Heisenberg, Margenau, Popper and Redhead – I first discuss some attempts at distinguishing dispositional from non-dispositional properties, and then relate the distinction to the formalism of quantum mechanics. Since any answer to the question titling the paper must be interpretation-dependent, I review some of the main interpretations of quantum mechanics in order to argue that the ontology of (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   8 citations  
  11.  70
    A new application of the modal-Hamiltonian interpretation of quantum mechanics: The problem of optical isomerism.Sebastian Fortin, Olimpia Lombardi & Juan Camilo Martínez González - 2018 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 62:123-135.
    The modal-Hamiltonian interpretation belongs to the modal family of interpretations of quantum mechanics. By endowing the Hamiltonian with the role of selecting the subset of the definite-valued observables of the system, it accounts for ideal and non-ideal measurements, and also supplies a criterion to distinguish between reliable and non-reliable measurements in the non-ideal case. It can be reformulated in an explicitly invariant form, in terms of the Casimir operators of the Galilean group, and the compatibility of the MHI (...)
    No categories
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark   9 citations  
  12.  23
    States vs. Changes of States: A Reformulation of the Ontic vs. Epistemic Distinction in Quantum Mechanics.Joanna Luc - 2022 - Foundations of Physics 53 (1):1-35.
    In this paper, I challenge the distinction between “epistemic” and “ontic” states propounded by Harrigan and Spekkens (Found Phys 40:125–157, 2010) by pointing out that because knowledge is factive, any state that represents someone’s knowledge about a physical system thereby also represents something about the physical system itself, so there is no such thing as “mere knowledge”. This criticism leads to the reformulation of the main question of the debate: instead of asking whether a given state is ontic or (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  13.  8
    Quantum Mechanics: Historical Contingency and the Copenhagen Hegemony.James T. Cushing - 1994 - University of Chicago Press.
    Why does one theory "succeed" while another, possibly clearer interpretation, fails? By exploring two observationally equivalent yet conceptually incompatible views of quantum mechanics, James T. Cushing shows how historical contingency can be crucial to determining a theory's construction and its position among competing views. Since the late 1920s, the theory formulated by Niels Bohr and his colleagues at Copenhagen has been the dominant interpretation of quantum mechanics. Yet an alternative interpretation, rooted in the work of Louis (...)
    No categories
    Direct download  
     
    Export citation  
     
    Bookmark   124 citations  
  14.  54
    The Electrodynamic 2-Body Problem and the Origin of Quantum Mechanics.C. K. Raju - 2004 - Foundations of Physics 34 (6):937-962.
    We numerically solve the functional differential equations (FDEs) of 2-particle electrodynamics, using the full electrodynamic force obtained from the retarded Lienard–Wiechert potentials and the Lorentz force law. In contrast, the usual formulation uses only the Coulomb force (scalar potential), reducing the electrodynamic 2-body problem to a system of ordinary differential equations (ODEs). The ODE formulation is mathematically suspect since FDEs and ODEs are known to be incompatible; however, the Coulomb approximation to the full electrodynamic force has been believed to be (...)
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark   5 citations  
  15.  36
    Comments on the correspondence principles of quantum mechanical operators.Gary R. Gruber - 1974 - Foundations of Physics 4 (1):19-22.
    In an article by Margenau and Cohen various correspondence principles were described in connection with Weyl, Born-Jordan, and symmetrized ordering of quantum mechanical operators. In this article we make an interesting comparison between the aforementioned ordering process and our previous prescriptions.
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  16.  43
    Interpretation of the hydrodynamical formalism of quantum mechanics.Sebastiano Sonego - 1991 - Foundations of Physics 21 (10):1135-1181.
    The hydrodynamical formalism for the quantum theory of a nonrelativistic particle is considered, together with a reformulation of it which makes use of the methods of kinetic theory and is based on the existence of the Wigner phase-space distribution. It is argued that this reformulation provides strong evidence in favor of the statistical interpretation of quantum mechanics, and it is suggested that this latter could be better understood as an almost classical statistical theory. Moreover, it (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   3 citations  
  17.  77
    Some remarks on classical representations of quantum mechanics.Werner Stulpe - 1994 - Foundations of Physics 24 (7):1089-1094.
    It is shown that, to a certain extent, the statistical framework of Hilbert-space quantum mechanics can be reformulated in classical terms.
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  18.  83
    Partial Measurements and the Realization of Quantum-Mechanical Counterfactuals.G. S. Paraoanu - 2011 - Foundations of Physics 41 (7):1214-1235.
    We propose partial measurements as a conceptual tool to understand how to operate with counterfactual claims in quantum physics. Indeed, unlike standard von Neumann measurements, partial measurements can be reversed probabilistically. We first analyze the consequences of this rather unusual feature for the principle of superposition, for the complementarity principle, and for the issue of hidden variables. Then we move on to exploring non-local contexts, by reformulating the EPR paradox, the quantum teleportation experiment, and the entanglement-swapping protocol for (...)
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark   3 citations  
  19.  48
    Weyl and Von Neumann: Symmetry, group theory, and quantum mechanics.Otavio Bueno - unknown
    In this paper, I shall discuss the heuristic role of symmetry in the mathematical formulation of quantum mechanics. I shall first set out the scene in terms of Bas van Fraassen’s elegant presentation of how symmetry principles can be used as problem-solving devices (see van Fraassen [1989] and [1991]). I will then examine in what ways Hermann Weyl and John von Neumann have used symmetry principles in their work as a crucial problem-solving tool. Finally, I shall explore (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  20.  8
    The Problem of Time: Quantum Mechanics Versus General Relativity.Edward Anderson - 2017 - Cham: Imprint: Springer.
    This book is a treatise on time and on background independence in physics. It first considers how time is conceived of in each accepted paradigm of physics: Newtonian, special relativity, quantum mechanics (QM) and general relativity (GR). Substantial differences are moreover uncovered between what is meant by time in QM and in GR. These differences jointly source the Problem of Time: Nine interlinked facets which arise upon attempting concurrent treatment of the QM and GR paradigms, as is required (...)
    Direct download  
     
    Export citation  
     
    Bookmark   6 citations  
  21.  43
    On Weyl geometry, random processes, and geometric quantum mechanics.Carlos Castro - 1992 - Foundations of Physics 22 (4):569-615.
    This paper discusses some of the technical problems related to a Weylian geometrical interpretation of the Schrödinger and Klein-Gordon equations proposed by E. Santamato. Solutions to these technical problems are proposed. A general prescription for finding out the interdependence between a particle's effective mass and Weyl's scalar curvature is presented which leads to the fundamental equation of geometric quantum mechanics, $$m(R)\frac{{dm(R)}}{{dR}} = \frac{{\hbar ^2 }}{{c^2 }}$$ The Dirac equation is rigorously derived within this formulation, and further problems (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   3 citations  
  22. Time's Arrow in a Quantum Universe: On the Status of Statistical Mechanical Probabilities.Eddy Keming Chen - 2020 - In Valia Allori (ed.), Statistical Mechanics and Scientific Explanation: Determinism, Indeterminism and Laws of Nature. World Scientific. pp. 479–515.
    In a quantum universe with a strong arrow of time, it is standard to postulate that the initial wave function started in a particular macrostate---the special low-entropy macrostate selected by the Past Hypothesis. Moreover, there is an additional postulate about statistical mechanical probabilities according to which the initial wave function is a ''typical'' choice in the macrostate. Together, they support a probabilistic version of the Second Law of Thermodynamics: typical initial wave functions will increase in entropy. Hence, there are (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   13 citations  
  23. Geometrizing Relativistic Quantum Mechanics.F. T. Falciano, M. Novello & J. M. Salim - 2010 - Foundations of Physics 40 (12):1885-1901.
    We propose a new approach to describe quantum mechanics as a manifestation of non-Euclidean geometry. In particular, we construct a new geometrical space that we shall call Qwist. A Qwist space has a extra scalar degree of freedom that ultimately will be identified with quantum effects. The geometrical properties of Qwist allow us to formulate a geometrical version of the uncertainty principle. This relativistic uncertainty relation unifies the position-momentum and time-energy uncertainty principles in a unique relation that (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  24. Rules and Meaning in Quantum Mechanics.Iulian D. Toader - manuscript
    This book concerns the metasemantics of quantum mechanics (QM). Roughly, it pursues an investigation at an intersection of the philosophy of physics and the philosophy of semantics, and it offers a critical analysis of rival explanations of the semantic facts of standard QM. Two problems for such explanations are discussed: categoricity and permanence of rules. New results include 1) a reconstruction of Einstein's incompleteness argument, which concludes that a local, separable, and categorical QM cannot exist, 2) a reinterpretation (...)
    Direct download  
     
    Export citation  
     
    Bookmark  
  25.  6
    Mind and Nature: Selected Writings on Philosophy, Mathematics, and Physics.Hermann Weyl & Peter Pesic (eds.) - 2009 - Princeton University Press.
    Hermann Weyl was one of the twentieth century's most important mathematicians, as well as a seminal figure in the development of quantum physics and general relativity. He was also an eloquent writer with a lifelong interest in the philosophical implications of the startling new scientific developments with which he was so involved. Mind and Nature is a collection of Weyl's most important general writings on philosophy, mathematics, and physics, including pieces that have never before been published in (...)
    Direct download  
     
    Export citation  
     
    Bookmark   7 citations  
  26.  4
    Mind and Nature.Hermann Weyl - 1934 - Philadelphia,: University of Pennsylvania Press.
    A new study of the mathematical-physical mode of cognition.
    No categories
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   10 citations  
  27.  54
    Information, Quantum Mechanics, and Gravity.Robert Carroll - 2005 - Foundations of Physics 35 (1):131-154.
    This is a basically expository article, with some new observations, tracing connections of the quantum potential to Fisher information, to Kähler geometry of the projective Hilbert space of a quantum system, and to the Weyl-Ricci scalar curvature of a Riemannian flat spacetime with quantum matter.
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  28.  31
    Fact-nets: Towards a Mathematical Framework for Relational Quantum Mechanics.Federico Zalamea, Vaclav Zatloukal, Jan Głowacki, Titouan Carette & Pierre Martin-Dussaud - 2023 - Foundations of Physics 53 (1):1-33.
    The relational interpretation of quantum mechanics (RQM) has received a growing interest since its first formulation in 1996. Usually presented as an interpretational layer over the usual quantum mechanics formalism, it appears as a philosophical perspective without proper mathematical counterparts. This state of affairs has direct consequences on the scientific debate on RQM which still suffers from misunderstandings and imprecise statements. In an attempt to clarify those debates, the present paper proposes a radical reformulation of (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  29.  27
    Mind and nature.Hermann Weyl - 1934 - Philadelphia,: University of Pennsylvania Press.
    "-- Norman Sieroka, ETH Zurich"This is an important complement to Weyl's Philosophy of Mathematics and Natural Science because most of the pieces in this new..
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   7 citations  
  30.  49
    Quantum mechanics in finite dimensions.T. S. Santhanam & A. R. Tekumalla - 1976 - Foundations of Physics 6 (5):583-587.
    We explicitly compute, following the method of Weyl, the commutator [Q, P] of the position operatorQ and the momentum operatorP of a particle when the dimension of the space on which they act is finite with a discrete spectrum; and we show that in the limit of a continuous spectrum with the dimension going to infinity this reduces to the usual relation of Heisenberg.
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  31. Reformulation of Dirac’s theory of electron to avoid negative energy or negative time solution.Biswaranjan Dikshit - 2017 - Journal of Theoretical Physics and Cryptography 13:1-4.
    Dirac’s relativistic theory of electron generally results in two possible solutions, one with positive energy and other with negative energy. Although positive energy solutions accurately represented particles such as electrons, interpretation of negative energy solution became very much controversial in the last century. By assuming the vacuum to be completely filled with a sea of negative energy electrons, Dirac tried to avoid natural transition of electron from positive to negative energy state using Pauli’s exclusion principle. However, many scientists like Bohr (...)
    Direct download  
     
    Export citation  
     
    Bookmark  
  32.  40
    Critique of Quantum Optical Experimental Refutations of Bohr’s Principle of Complementarity, of the Wootters–Zurek Principle of Complementarity, and of the Particle–Wave Duality Relation.P. N. Kaloyerou - 2016 - Foundations of Physics 46 (2):138-175.
    I argue that quantum optical experiments that purport to refute Bohr’s principle of complementarity fail in their aim. Some of these experiments try to refute complementarity by refuting the so called particle–wave duality relations, which evolved from the Wootters–Zurek reformulation of BPC. I therefore consider it important for my forgoing arguments to first recall the essential tenets of BPC, and to clearly separate BPC from WZPC, which I will argue is a direct contradiction of BPC. This leads to (...)
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark   4 citations  
  33.  34
    Doubly stochastic matrices in quantum mechanics.James D. Louck - 1997 - Foundations of Physics 27 (8):1085-1104.
    The general set of doubly stochastic matrices of order n corresponding to ordinary nonrelativistic quantum mechanical transition probability matrices is given. Landé's discussion of the nonquantal origin of such matrices is noted. Several concrete examples are presented for elementary and composite angular momentum systems with the focus on the unitary symmetry associated with such systems in the spirit of the recent work of Bohr and Ulfbeck. Birkhoff's theorem on doubly stochastic matrices of order n is reformulated in a geometrical (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  34.  94
    A geometric approach to quantum mechanics.J. Anandan - 1991 - Foundations of Physics 21 (11):1265-1284.
    It is argued that quantum mechanics is fundamentally a geometric theory. This is illustrated by means of the connection and symplectic structures associated with the projective Hilbert space, using which the geometric phase can be understood. A prescription is given for obtaining the geometric phase from the motion of a time dependent invariant along a closed curve in a parameter space, which may be finite dimensional even for nonadiabatic cyclic evolutions in an infinite dimensional Hilbert space. Using the (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   6 citations  
  35.  22
    Information theory, quantum mechanics and‘linguistic duality’.C. T. K. Chari - 1966 - Dialectica 20 (1):67-88.
    – The paper explores first the postulational basis and significance of‘measures of information’in current information theory and their possible relations to physical entropy and Brillouin's‘negentropy’regarded as the negative of entropy. For some purposes, the same pattern or formal structure may be abstracted from both‘entropy’and‘information’. The paper analyzes, in the second place, the mathematical analogies which have been traced between information theory and quantum mechanics and argues that the analogies have but a limited value when we come to grips (...)
    Direct download  
     
    Export citation  
     
    Bookmark   1 citation  
  36.  53
    A reformulation of Bergson's theory of memory.Walter M. Elsasser - 1953 - Philosophy of Science 20 (1):7-21.
    The book of Bergson underlying the present study appeared in 1896. It is entitled “Matter and Memory” and is a philosophical disquisition into the relation and mutual limitations of organic life and inert matter. Bergson proposes to deal with this very general problem under the special aspect of a theory of the functioning of the human brain and the mechanism of ordinary memory. Such use of the inductive method, which starts from a special problem in order to arrive at results (...)
    Direct download (8 more)  
     
    Export citation  
     
    Bookmark  
  37.  68
    Reformulation of the hidden variable problem using entropic measure of uncertainty.Miklós Rédei - 1987 - Synthese 73 (2):371 - 379.
    Using a recently introduced entropy-like measure of uncertainty of quantum mechanical states, the problem of hidden variables is redefined in operator algebraic framework of quantum mechanics in the following way: if A, , E(A), E() are von Neumann algebras and their state spaces respectively, (, E()) is said to be an entropic hidden theory of (A, E(A)) via a positive map L from onto A if for all states E(A) the composite state ° L E() can be (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  38.  45
    Philosophy of Quantum Probability - An empiricist study of its formalism and logic.Ronnie Hermens - unknown
    The use of probability theory is widespread in our daily life as well as in scientific theories. In virtually all cases, calculations can be carried out within the framework of classical probability theory. A special exception is given by quantum mechanics, which gives rise to a new probability theory: quantum probability theory. This dissertation deals with the question of how this formalism can be understood from a philosophical and physical perspective. The dissertation is divided into three parts. (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  39.  48
    Remark on a Group-Theoretical Formalism for Quantum Mechanics and the Quantum-to-Classical Transition.J. K. Korbicz & M. Lewenstein - 2007 - Foundations of Physics 37 (6):879-896.
    We sketch a group-theoretical framework, based on the Heisenberg–Weyl group, encompassing both quantum and classical statistical descriptions of unconstrained, non-relativistic mechanical systems. We redefine in group-theoretical terms a kinematical arena and a space of statistical states of a system, achieving a unified quantum-classical language and an elegant version of the quantum-to-classical transition. We briefly discuss the structure of observables and dynamics within our framework.
    Direct download (6 more)  
     
    Export citation  
     
    Bookmark  
  40. The Minimal Modal Interpretation of Quantum Theory.Jacob Barandes & David Kagan - manuscript
    We introduce a realist, unextravagant interpretation of quantum theory that builds on the existing physical structure of the theory and allows experiments to have definite outcomes but leaves the theory’s basic dynamical content essentially intact. Much as classical systems have specific states that evolve along definite trajectories through configuration spaces, the traditional formulation of quantum theory permits assuming that closed quantum systems have specific states that evolve unitarily along definite trajectories through Hilbert spaces, and our interpretation extends (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  41.  23
    Weyl, Dirac and Maxwell Quantum Cellular Automata: Analitical Solutions and Phenomenological Predictions of the Quantum Cellular Automata Theory of Free Fields.Alessandro Bisio, Giacomo Mauro D’Ariano, Paolo Perinotti & Alessandro Tosini - 2015 - Foundations of Physics 45 (10):1203-1221.
    Recent advances on quantum foundations achieved the derivation of free quantum field theory from general principles, without referring to mechanical notions and relativistic invariance. From the aforementioned principles a quantum cellular automata theory follows, whose relativistic limit of small wave-vector provides the free dynamics of quantum field theory. The QCA theory can be regarded as an extended quantum field theory that describes in a unified way all scales ranging from an hypothetical discrete Planck scale up (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  42. Is it possible to nominalize quantum mechanics?Otávio Bueno - 2003 - Philosophy of Science 70 (5):1424-1436.
    Hartry Field (1980) has developed an interesting nominalization strategy for Newtonian gravitation theory—a strategy that reformulates the theory without quantification over abstract entities. According to David Malament (1982), Field's strategy cannot be extended to quantum mechanics (QM), and so it only has a limited scope. In a recent work, Mark Balaguer has responded to Malament's challenge by indicating how QM can be nominalized, and by “doing much of the work needed to provide the nominalization” (Balaguer 1998, 114). In (...)
    Direct download (8 more)  
     
    Export citation  
     
    Bookmark   15 citations  
  43. Quantum Theory: An Appraisal.Bohmian Mechanics - 1995 - Boston Studies in the Philosophy of Science 184.
  44. The Kochen - Specker theorem in quantum mechanics: a philosophical comment (part 1).Vasil Penchev - 2013 - Philosophical Alternatives 22 (1):67-77.
    Non-commuting quantities and hidden parameters – Wave-corpuscular dualism and hidden parameters – Local or nonlocal hidden parameters – Phase space in quantum mechanicsWeyl, Wigner, and Moyal – Von Neumann’s theorem about the absence of hidden parameters in quantum mechanics and Hermann – Bell’s objection – Quantum-mechanical and mathematical incommeasurability – Kochen – Specker’s idea about their equivalence – The notion of partial algebra – Embeddability of a qubit into a bit – (...) computer is not Turing machine – Is continuality universal? – Diffeomorphism and velocity – Einstein’s general principle of relativity – „Mach’s principle“ – The Skolemian relativity of the discrete and the continuous – The counterexample in § 6 of their paper – About the classical tautology which is untrue being replaced by the statements about commeasurable quantum-mechanical quantities – Logical hidden parameters – The undecidability of the hypothesis about hidden parameters – Wigner’s work and и Weyl’s previous one – Lie groups, representations, and psi-function – From a qualitative to a quantitative expression of relativity − psi-function, or the discrete by the random – Bartlett’s approach − psi-function as the characteristic function of random quantity – Discrete and/ or continual description – Quantity and its “digitalized projection“ – The idea of „velocity−probability“ – The notion of probability and the light speed postulate – Generalized probability and its physical interpretation – A quantum description of macro-world – The period of the as-sociated de Broglie wave and the length of now – Causality equivalently replaced by chance – The philosophy of quantum information and religion – Einstein’s thesis about “the consubstantiality of inertia ant weight“ – Again about the interpretation of complex velocity – The speed of time – Newton’s law of inertia and Lagrange’s formulation of mechanics – Force and effect – The theory of tachyons and general relativity – Riesz’s representation theorem – The notion of covariant world line – Encoding a world line by psi-function – Spacetime and qubit − psi-function by qubits – About the physical interpretation of both the complex axes of a qubit – The interpretation of the self-adjoint operators components – The world line of an arbitrary quantity – The invariance of the physical laws towards quantum object and apparatus – Hilbert space and that of Minkowski – The relationship between the coefficients of -function and the qubits – World line = psi-function + self-adjoint operator – Reality and description – Does a „curved“ Hilbert space exist? – The axiom of choice, or when is possible a flattening of Hilbert space? – But why not to flatten also pseudo-Riemannian space? – The commutator of conjugate quantities – Relative mass – The strokes of self-movement and its philosophical interpretation – The self-perfection of the universe – The generalization of quantity in quantum physics – An analogy of the Feynman formalism – Feynman and many-world interpretation – The psi-function of various objects – Countable and uncountable basis – Generalized continuum and arithmetization – Field and entanglement – Function as coding – The idea of „curved“ Descartes product – The environment of a function – Another view to the notion of velocity-probability – Reality and description – Hilbert space as a model both of object and description – The notion of holistic logic – Physical quantity as the information about it – Cross-temporal correlations – The forecasting of future – Description in separable and inseparable Hilbert space – „Forces“ or „miracles“ – Velocity or time – The notion of non-finite set – Dasein or Dazeit – The trajectory of the whole – Ontological and onto-theological difference – An analogy of the Feynman and many-world interpretation − psi-function as physical quantity – Things in the world and instances in time – The generation of the physi-cal by mathematical – The generalized notion of observer – Subjective or objective probability – Energy as the change of probability per the unite of time – The generalized principle of least action from a new view-point – The exception of two dimensions and Fermat’s last theorem. (shrink)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  45.  43
    Imprints of the Quantum World in Classical Mechanics.Maurice A. de Gosson & Basil J. Hiley - 2011 - Foundations of Physics 41 (9):1415-1436.
    The imprints left by quantum mechanics in classical (Hamiltonian) mechanics are much more numerous than is usually believed. We show that the Schrödinger equation for a nonrelativistic spinless particle is a classical equation which is equivalent to Hamilton’s equations. Our discussion is quite general, and incorporates time-dependent systems. This gives us the opportunity of discussing the group of Hamiltonian canonical transformations which is a non-linear variant of the usual symplectic group.
    Direct download (6 more)  
     
    Export citation  
     
    Bookmark   5 citations  
  46.  51
    Foundations of Quantum Mechanics.Emily Adlam - 2021 - Cambridge University Press.
    Quantum mechanics is an extraordinarily successful scientific theory. But more than 100 years after it was first introduced, the interpretation of the theory remains controversial. This Element introduces some of the most puzzling questions at the foundations of quantum mechanics and provides an up-to-date and forward-looking survey of the most prominent ways in which physicists and philosophers of physics have attempted to resolve them. Topics covered include nonlocality, contextuality, the reality of the wavefunction and the measurement (...)
    No categories
    Direct download  
     
    Export citation  
     
    Bookmark   4 citations  
  47.  21
    Some remarks on the mentalistic reformulation of the measurement problem: a reply to S. Gao.Andrea Oldofredi - 2019 - Synthese 198 (2):1-17.
    Gao presents a new mentalistic reformulation of the well-known measurement problem affecting the standard formulation of quantum mechanics. According to this author, it is essentially a determinate-experience problem, namely a problem about the compatibility between the linearity of the Schrödinger’s equation, the fundamental law of quantum theory, and definite experiences perceived by conscious observers. In this essay I aim to clarify that the well-known measurement problem is a mathematical consequence of quantum theory’s formalism, and that (...)
    No categories
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  48. A Synopsis of the Minimal Modal Interpretation of Quantum Theory.Jacob Barandes & David Kagan - manuscript
    We summarize a new realist, unextravagant interpretation of quantum theory that builds on the existing physical structure of the theory and allows experiments to have definite outcomes but leaves the theory's basic dynamical content essentially intact. Much as classical systems have specific states that evolve along definite trajectories through configuration spaces, the traditional formulation of quantum theory permits assuming that closed quantum systems have specific states that evolve unitarily along definite trajectories through Hilbert spaces, and our interpretation (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  49. Reformulating Bell's theorem: The search for a truly local quantum theory.Mordecai Waegell & Kelvin J. McQueen - 2020 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 70:39-50.
    The apparent nonlocality of quantum theory has been a persistent concern. Einstein et al. and Bell emphasized the apparent nonlocality arising from entanglement correlations. While some interpretations embrace this nonlocality, modern variations of the Everett-inspired many worlds interpretation try to circumvent it. In this paper, we review Bell's "no-go" theorem and explain how it rests on three axioms, local causality, no superdeterminism, and one world. Although Bell is often taken to have shown that local causality is ruled out by (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   3 citations  
  50.  26
    Quantum Walks, Weyl Equation and the Lorentz Group.Paolo Perinotti, Giacomo Mauro D’Ariano & Alessandro Bisio - 2017 - Foundations of Physics 47 (8):1065-1076.
    Quantum cellular automata and quantum walks provide a framework for the foundations of quantum field theory, since the equations of motion of free relativistic quantum fields can be derived as the small wave-vector limit of quantum automata and walks starting from very general principles. The intrinsic discreteness of this framework is reconciled with the continuous Lorentz symmetry by reformulating the notion of inertial reference frame in terms of the constants of motion of the quantum (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   1 citation  
1 — 50 / 1000