Switch to: References

Add citations

You must login to add citations.
  1. Realism and Objectivism in Quantum Mechanics.Vassilios Karakostas - 2012 - Journal for General Philosophy of Science / Zeitschrift für Allgemeine Wissenschaftstheorie 43 (1):45-65.
    The present study attempts to provide a consistent and coherent account of what the world could be like, given the conceptual framework and results of contemporary quantum theory. It is suggested that standard quantum mechanics can, and indeed should, be understood as a realist theory within its domain of application. It is pointed out, however, that a viable realist interpretation of quantum theory requires the abandonment or radical revision of the classical conception of physical reality and its traditional philosophical presuppositions. (...)
    Direct download (7 more)  
     
    Export citation  
     
    Bookmark   8 citations  
  • Forms of quantum nonseparability and related philosophical consequences.Vassilios Karakostas - 2004 - Journal for General Philosophy of Science / Zeitschrift für Allgemeine Wissenschaftstheorie 35 (2):283 - 312.
    Standard quantum mechanics unquestionably violates the separability principle that classical physics (be it point-like analytic, statistical, or field-theoretic) accustomed us to consider as valid. In this paper, quantum nonseparability is viewed as a consequence of the Hilbert-space quantum mechanical formalism, avoiding thus any direct recourse to the ramifications of Kochen-Specker’s argument or Bell’s inequality. Depending on the mode of assignment of states to physical systems – unit state vectors versus non-idempotent density operators – we distinguish between strong/relational and weak/deconstructional forms (...)
    Direct download (8 more)  
     
    Export citation  
     
    Bookmark   15 citations  
  • On the meaning of the relativity principle and other symmetries.Harvey R. Brown & Roland Sypel - 1995 - International Studies in the Philosophy of Science 9 (3):235 – 253.
    Abstract The historical evolution of the principle of relativity from Galileo to Einstein is briefly traced, and purported difficulties with Einstein's formulation of the principle are examined and dismissed. This formulation is then compared to a precise version formulated recently in the geometrical language of spacetime theories. We claim that the recent version is both logically puzzling and fails to capture a crucial physical insight contained in the earlier formulations. The implications of this claim for the modern treatment of general (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   23 citations