Switch to: Citations

Add references

You must login to add references.
  1. Empirical Philosophy of Science: Introducing Qualitative Methods into Philosophy of Science.Hanne Andersen, Nancy J. Nersessian & Susann Wagenknecht (eds.) - 2015 - Cham: Springer International Publishing.
    The book examines the emerging approach of using qualitative methods, such as interviews and field observations, in the philosophy of science. Qualitative methods are gaining popularity among philosophers of science as more and more scholars are resorting to empirical work in their study of scientific practices. At the same time, the results produced through empirical work are quite different from those gained through the kind of introspective conceptual analysis more typical of philosophy. This volume explores the benefits and challenges of (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   16 citations  
  • Epistemic dependence in interdisciplinary groups.Hanne Andersen & Susann Wagenknecht - 2013 - Synthese 190 (11):1881-1898.
    In interdisciplinary research scientists have to share and integrate knowledge between people and across disciplinary boundaries. An important issue for philosophy of science is to understand how scientists who work in these kinds of environments exchange knowledge and develop new concepts and theories across diverging fields. There is a substantial literature within social epistemology that discusses the social aspects of scientific knowledge, but so far few attempts have been made to apply these resources to the analysis of interdisciplinary science. Further, (...)
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark   56 citations  
  • How biologists conceptualize genes: an empirical study.Karola Stotz, Paul E. Griffiths & Rob Knight - 2004 - Studies in History and Philosophy of Science Part C: Studies in History and Philosophy of Biological and Biomedical Sciences 35 (4):647-673.
    Philosophers and historians of biology have argued that genes are conceptualized differently in different fields of biology and that these differences influence both the conduct of research and the interpretation of research by audiences outside the field in which the research was conducted. In this paper we report the results of a questionnaire study of how genes are conceptualized by biological scientists at the University of Sydney, Australia. The results provide tentative support for some hypotheses about conceptual differences between different (...)
    Direct download (9 more)  
     
    Export citation  
     
    Bookmark   60 citations  
  • How biologists conceptualize genes: an empirical study.Karola Stotz, Paul E. Griffiths & Rob Knight - 2003 - Studies in History and Philosophy of Science Part C: Studies in History and Philosophy of Biological and Biomedical Sciences 35 (4):647-673.
    Philosophers and historians of biology have argued that genes are conceptualized differently in different fields of biology and that these differences influence both the conduct of research and the interpretation of research by audiences outside the field in which the research was conducted. In this paper we report the results of a questionnaire study of how genes are conceptualized by biological scientists at the University of Sydney, Australia. The results provide tentative support for some hypotheses about conceptual differences between different (...)
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark   49 citations  
  • Experimental Philosophy of Science and Philosophical Differences across the Sciences.Brian Robinson, Chad Gonnerman & Michael O’Rourke - 2019 - Philosophy of Science 86 (3):551-576.
    This paper contributes to the underdeveloped field of experimental philosophy of science. We examine variability in the philosophical views of scientists. Using data from Toolbox Dialogue Initiative, we analyze scientists’ responses to prompts on philosophical issues (methodology, confirmation, values, reality, reductionism, and motivation for scientific research) to assess variance in the philosophical views of physical scientists, life scientists, and social and behavioral scientists. We find six prompts about which differences arose, with several more that look promising for future research. We (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   6 citations  
  • The method to "meaning": A reply to Leplin.Nancy J. Nersessian - 1991 - Philosophy of Science 58 (4):678-686.
    In his article, "Is Essentialism Unscientific?" (1988), Jarrett Leplin claims that I do not have sufficient grounds for rejecting the customary "philosophical method of discovery" that allows for the direct transfer of theories developed in the philosophy of language to science. While admitting that all attempts at transfer thus far have failed, he still maintains that method is sound. I argue that the wholesale failure of these attempts is reason enough to suspect the method and to try to devise one (...)
    Direct download (9 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  • Modeling Practices in Conceptual Innovation.Nancy J. Nersessian - 2012 - In Uljana Feest & Friedrich Steinle (eds.), Scientific Concepts and Investigative Practice. de Gruyter. pp. 245-270.
    No categories
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   5 citations  
  • Model‐Based Reasoning in Distributed Cognitive Systems.Nancy J. Nersessian - 2006 - Philosophy of Science 73 (5):699-709.
    This paper examines the nature of model-based reasoning in the interplay between theory and experiment in the context of biomedical engineering research laboratories, where problem solving involves using physical models. These "model systems" are sites of experimentation where in vitro models are used to screen, control, and simulate specific aspects of in vivo phenomena. As with all models, simulation devices are idealized representations, but they are also systems themselves, possessing engineering constraints. Drawing on research in contemporary cognitive science that construes (...)
    Direct download (8 more)  
     
    Export citation  
     
    Bookmark   11 citations  
  • How Do Engineering Scientists Think? Model‐Based Simulation in Biomedical Engineering Research Laboratories.Nancy J. Nersessian - 2009 - Topics in Cognitive Science 1 (4):730-757.
    Designing, building, and experimenting with physical simulation models are central problem‐solving practices in the engineering sciences. Model‐based simulation is an epistemic activity that includes exploration, generation and testing of hypotheses, explanation, and inference. This paper argues that to interpret and understand how these simulation models function in creating knowledge and technologies requires construing problem solving as accomplished by a researcher–artifact system. It draws on and further develops the framework of “distributed cognition” to interpret data collected in ethnographic and cognitive‐historical studies (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   19 citations  
  • Exploration and exploitation of Victorian science in Darwin’s reading notebooks.Jaimie Murdock, Colin Allen & Simon DeDeo - 2017 - Cognition 159 (C):117-126.
    Search in an environment with an uncertain distribution of resources involves a trade-off between exploitation of past discoveries and further exploration. This extends to information foraging, where a knowledge-seeker shifts between reading in depth and studying new domains. To study this decision-making process, we examine the reading choices made by one of the most celebrated scientists of the modern era: Charles Darwin. From the full-text of books listed in his chronologically-organized reading journals, we generate topic models to quantify his local (...)
    Direct download (6 more)  
     
    Export citation  
     
    Bookmark   9 citations  
  • The History of Science as a Graveyard of Theories: A Philosophers’ Myth?Moti Mizrahi - 2016 - International Studies in the Philosophy of Science 30 (3):263-278.
    According to the antirealist argument known as the pessimistic induction, the history of science is a graveyard of dead scientific theories and abandoned theoretical posits. Support for this pessimistic picture of the history of science usually comes from a few case histories, such as the demise of the phlogiston theory and the abandonment of caloric as the substance of heat. In this article, I wish to take a new approach to examining the ‘history of science as a graveyard of theories’ (...)
    Direct download (8 more)  
     
    Export citation  
     
    Bookmark   22 citations  
  • The Pessimistic Induction: A Bad Argument Gone Too Far.Moti Mizrahi - 2013 - Synthese 190 (15):3209-3226.
    In this paper, I consider the pessimistic induction construed as a deductive argument (specifically, reductio ad absurdum) and as an inductive argument (specifically, inductive generalization). I argue that both formulations of the pessimistic induction are fallacious. I also consider another possible interpretation of the pessimistic induction, namely, as pointing to counterexamples to the scientific realist’s thesis that success is a reliable mark of (approximate) truth. I argue that this interpretation of the pessimistic induction fails, too. If this is correct, then (...)
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark   59 citations  
  • Beyond categorical definitions of life: a data-driven approach to assessing lifeness.Christophe Malaterre & Jean-François Chartier - 2019 - Synthese 198 (5):4543-4572.
    The concept of “life” certainly is of some use to distinguish birds and beavers from water and stones. This pragmatic usefulness has led to its construal as a categorical predicate that can sift out living entities from non-living ones depending on their possessing specific properties—reproduction, metabolism, evolvability etc. In this paper, we argue against this binary construal of life. Using text-mining methods across over 30,000 scientific articles, we defend instead a degrees-of-life view and show how these methods can contribute to (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   7 citations  
  • The creative industry of integrative systems biology.Miles MacLeod & Nancy J. Nersessian - 2013 - Mind and Society 12 (1):35-48.
    Integrative systems biology is among the most innovative fields of contemporary science, bringing together scientists from a range of diverse backgrounds and disciplines to tackle biological complexity through computational and mathematical modeling. The result is a plethora of problem-solving techniques, theoretical perspectives, lab-structures and organizations, and identity labels that have made it difficult for commentators to pin down precisely what systems biology is, philosophically or sociologically. In this paper, through the ethnographic investigation of two ISB laboratories, we explore the particular (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   10 citations  
  • Thinking about mechanisms.Peter Machamer, Lindley Darden & Carl F. Craver - 2000 - Philosophy of Science 67 (1):1-25.
    The concept of mechanism is analyzed in terms of entities and activities, organized such that they are productive of regular changes. Examples show how mechanisms work in neurobiology and molecular biology. Thinking in terms of mechanisms provides a new framework for addressing many traditional philosophical issues: causality, laws, explanation, reduction, and scientific change.
    Direct download (10 more)  
     
    Export citation  
     
    Bookmark   1327 citations  
  • Modeling complexity: cognitive constraints and computational model-building in integrative systems biology.Miles MacLeod & Nancy J. Nersessian - 2018 - History and Philosophy of the Life Sciences 40 (1):17.
    Modern integrative systems biology defines itself by the complexity of the problems it takes on through computational modeling and simulation. However in integrative systems biology computers do not solve problems alone. Problem solving depends as ever on human cognitive resources. Current philosophical accounts hint at their importance, but it remains to be understood what roles human cognition plays in computational modeling. In this paper we focus on practices through which modelers in systems biology use computational simulation and other tools to (...)
    Direct download (8 more)  
     
    Export citation  
     
    Bookmark   8 citations  
  • Coupling simulation and experiment: The bimodal strategy in integrative systems biology.Miles MacLeod & Nancy J. Nersessian - 2013 - Studies in History and Philosophy of Science Part C: Studies in History and Philosophy of Biological and Biomedical Sciences 44 (4a):572-584.
    The importation of computational methods into biology is generating novel methodological strategies for managing complexity which philosophers are only just starting to explore and elaborate. This paper aims to enrich our understanding of methodology in integrative systems biology, which is developing novel epistemic and cognitive strategies for managing complex problem-solving tasks. We illustrate this through developing a case study of a bimodal researcher from our ethnographic investigation of two systems biology research labs. The researcher constructed models of metabolic and cell-signaling (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   25 citations  
  • Building Simulations from the Ground Up: Modeling and Theory in Systems Biology.Miles MacLeod & Nancy J. Nersessian - 2013 - Philosophy of Science 80 (4):533-556.
    In this article, we provide a case study examining how integrative systems biologists build simulation models in the absence of a theoretical base. Lacking theoretical starting points, integrative systems biology researchers rely cognitively on the model-building process to disentangle and understand complex biochemical systems. They build simulations from the ground up in a nest-like fashion, by pulling together information and techniques from a variety of possible sources and experimenting with different structures in order to discover a stable, robust result. Finally, (...)
    Direct download (7 more)  
     
    Export citation  
     
    Bookmark   28 citations  
  • Exploring the Folkbiological Conception of Human Nature.Stefan Linquist, Edouard Machery, Paul E. Griffiths & Karola Stotz - 2011 - Philosophical Transactions of the Royal Society B-Biological Sciences 366 (1563):444.
    Integrating the study of human diversity into the human evolutionary sciences requires substantial revision of traditional conceptions of a shared human nature. This process may be made more difficult by entrenched, 'folkbiological' modes of thought. Earlier work by the authors suggests that biologically naive subjects hold an implicit theory according to which some traits are expressions of an animal's inner nature while others are imposed by its environment. In this paper, we report further studies that extend and refine our account (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   26 citations  
  • Varieties of noise: Analogical reasoning in synthetic biology.Tarja Knuuttila & Andrea Loettgers - 2014 - Studies in History and Philosophy of Science Part A 48:76-88.
    The picture of synthetic biology as a kind of engineering science has largely created the public understanding of this novel field, covering both its promises and risks. In this paper, we will argue that the actual situation is more nuanced and complex. Synthetic biology is a highly interdisciplinary field of research located at the interface of physics, chemistry, biology, and computational science. All of these fields provide concepts, metaphors, mathematical tools, and models, which are typically utilized by synthetic biologists by (...)
    Direct download (6 more)  
     
    Export citation  
     
    Bookmark   22 citations  
  • Much ado about.R. Hardest - 2018 - Studies in History and Philosophy of Science Part C: Studies in History and Philosophy of Biological and Biomedical Sciences 68:15-24.
    No categories
    Direct download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Scientists’ Conceptions of Good Research Practice.Nora Hangel & Jutta Schickore - 2017 - Perspectives on Science 25 (6):766-791.
    In a recent editorial published in Nature, the journal's editors comment on a new automated software that has been used to check findings in psychology publications. The editors express concern with the way in which the anonymous fact-checkers have proceeded, but at the same time, they underscore the crucial role of peer criticism for scientific progress and insist: "self-correction is at the heart of science." Brief as it is, the editorial showcases that peer criticism and the application of norms of (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   12 citations  
  • True enough.Catherine Z. Elgin - 2004 - Philosophical Issues 14 (1):113–131.
    Truth is standardly considered a requirement on epistemic acceptability. But science and philosophy deploy models, idealizations and thought experiments that prescind from truth to achieve other cognitive ends. I argue that such felicitous falsehoods function as cognitively useful fictions. They are cognitively useful because they exemplify and afford epistemic access to features they share with the relevant facts. They are falsehoods in that they diverge from the facts. Nonetheless, they are true enough to serve their epistemic purposes. Theories that contain (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   307 citations  
  • Rethinking correspondence: how the process of constructing models leads to discoveries and transfer in the bioengineering sciences.Nancy J. Nersessian & Sanjay Chandrasekharan - 2017 - Synthese 198 (Suppl 21):1-30.
    Building computational models of engineered exemplars, or prototypes, is a common practice in the bioengineering sciences. Computational models in this domain are often built in a patchwork fashion, drawing on data and bits of theory from many different domains, and in tandem with actual physical models, as the key objective is to engineer these prototypes of natural phenomena. Interestingly, such patchy model building, often combined with visualizations, whose format is open to a wide range of choice, leads to the discovery (...)
    No categories
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   3 citations  
  • Building Cognition: The Construction of Computational Representations for Scientific Discovery.Sanjay Chandrasekharan & Nancy J. Nersessian - 2015 - Cognitive Science 39 (8):1727-1763.
    Novel computational representations, such as simulation models of complex systems and video games for scientific discovery, are dramatically changing the way discoveries emerge in science and engineering. The cognitive roles played by such computational representations in discovery are not well understood. We present a theoretical analysis of the cognitive roles such representations play, based on an ethnographic study of the building of computational models in a systems biology laboratory. Specifically, we focus on a case of model-building by an engineer that (...)
    No categories
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   19 citations  
  • Mechanism and Biological Explanation.William Bechtel - 2011 - Philosophy of Science 78 (4):533-557.
    This article argues that the basic account of mechanism and mechanistic explanation, involving sequential execution of qualitatively characterized operations, is itself insufficient to explain biological phenomena such as the capacity of living organisms to maintain themselves as systems distinct from their environment. This capacity depends on cyclic organization, including positive and negative feedback loops, which can generate complex dynamics. Understanding cyclically organized mechanisms with complex dynamics requires coordinating research directed at decomposing mechanisms into parts and operations with research using computational (...)
    Direct download (7 more)  
     
    Export citation  
     
    Bookmark   124 citations  
  • Knowledge and Social Imagery.David Bloor - 1979 - British Journal for the Philosophy of Science 30 (2):195-199.
     
    Export citation  
     
    Bookmark   535 citations  
  • Interpreting scientific and engineering practices: Integrating the cognitive, social, and cultural dimensions.N. J. Nersessian - 2005 - In M. Gorman, R. Tweney, D. Gooding & A. Kincannon (eds.), Scientific and Technological Thinking. Erlbaum. pp. 17--56.
    No categories
    Direct download  
     
    Export citation  
     
    Bookmark   34 citations  
  • Cognition in the Wild.Edward Hutchins - 1995 - Critica 27 (81):101-105.