Results for 'microtubule'

146 found
Order:
  1.  18
    Microtubule Plus End Dynamics − Do We Know How Microtubules Grow?Jeffrey van Haren & Torsten Wittmann - 2019 - Bioessays 41 (3):1800194.
    Microtubules form a highly dynamic filament network in all eukaryotic cells. Individual microtubules grow by tubulin dimer subunit addition and frequently switch between phases of growth and shortening. These unique dynamics are powered by GTP hydrolysis and drive microtubule network remodeling, which is central to eukaryotic cell biology and morphogenesis. Yet, our knowledge of the molecular events at growing microtubule ends remains incomplete. Here, recent ultrastructural, biochemical and cell biological data are integrated to develop a realistic model of (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  2.  7
    Microtubules as key coordinators of nuclear envelope and endoplasmic reticulum dynamics during mitosis.Anne-Lore Schlaitz - 2014 - Bioessays 36 (7):665-671.
    During mitosis, cells comprehensively restructure their interior to promote the faithful inheritance of DNA and cytoplasmic contents. In metazoans, this restructuring entails disassembly of the nuclear envelope, redistribution of its components into the endoplasmic reticulum (ER) and eventually nuclear envelope reassembly around the segregated chromosomes. The microtubule cytoskeleton has recently emerged as a critical regulator of mitotic nuclear envelope and ER dynamics. Microtubules and associated molecular motors tear open the nuclear envelope in prophase and remove nuclear envelope remnants from (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  3.  24
    Promoting microtubule assembly: A hypothesis for the functional significance of the + TIP network.Kamlesh K. Gupta, Emily O. Alberico, Inke S. Näthke & Holly V. Goodson - 2014 - Bioessays 36 (9):818-826.
    Regulation of microtubule (MT) dynamics is essential for many cellular processes, but the machinery that controls MT dynamics remains poorly understood. MT plus‐end tracking proteins (+TIPs) are a set of MT‐associated proteins that dynamically track growing MT ends and are uniquely positioned to govern MT dynamics. +TIPs associate with each other in a complex array of inter‐ and intra‐molecular interactions known as the “+TIP network.” Why do so many +TIPs bind to other +TIPs? Typical answers include the ideas that (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  4.  28
    Microtubule dynamic instability: A new model with coupled GTP hydrolysis and multistep catastrophe.Hugo Bowne-Anderson, Marija Zanic, Monika Kauer & Jonathon Howard - 2013 - Bioessays 35 (5):452–461.
    A key question in understanding microtubule dynamics is how GTP hydrolysis leads to catastrophe, the switch from slow growth to rapid shrinkage. We first provide a review of the experimental and modeling literature, and then present a new model of microtubule dynamics. We demonstrate that vectorial, random, and coupled hydrolysis mechanisms are not consistent with the dependence of catastrophe on tubulin concentration and show that, although single-protofilament models can explain many features of dynamics, they do not describe catastrophe (...)
    No categories
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  5.  1
    Tau, microtubule dynamics, and axonal transport: New paradigms for neurodegenerative disease.Alisa Cario & Christopher L. Berger - 2023 - Bioessays 45 (8):2200138.
    The etiology of Tauopathies, a diverse class of neurodegenerative diseases associated with the Microtubule Associated Protein (MAP) Tau, is usually described by a common mechanism in which Tau dysfunction results in the loss of axonal microtubule stability. Here, we reexamine and build upon the canonical disease model to encompass other Tau functions. In addition to regulating microtubule dynamics, Tau acts as a modulator of motor proteins, a signaling hub, and a scaffolding protein. This diverse array of functions (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  6.  45
    Microtubule Inner Proteins: A Meshwork of Luminal Proteins Stabilizing the Doublet Microtubule.Muneyoshi Ichikawa & Khanh Huy Bui - 2018 - Bioessays 40 (3):1700209.
    Motile eukaryotic cilia and flagella are hair-like organelles responsible for cell motility and mucociliary clearance. Using cryo-electron tomography, it has been shown that the doublet microtubule, the cytoskeleton core of the cilia and flagella, has microtubule inner protein structures binding periodically inside its lumen. More recently, single-particle cryo-electron microscopy analyses of isolated doublet microtubules have shown that microtubule inner proteins form a meshwork inside the doublet microtubule. High-resolution structures revealed new types of interactions between the (...) inner proteins and the tubulin lattice. In addition, they offered insights into the potential roles of microtubule inner proteins in the stabilization and assembly of the doublet microtubule. Herein, we review our new insights into microtubule inner proteins from the doublet microtubule together with the current body of literature on microtubule inner proteins. High-resolution cryo-electron microscopy structure of the doublet microtubule from Tetrahymena reveals insights into the interactions between microtubule inner proteins with the doublet microtubule tubulin lattice and implication of their functions in the stability and assembly of the doublet microtubule. (shrink)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  7.  14
    Nonneural microtubule proteins: Structure and function.Thomas H. Macrae - 1987 - Bioessays 6 (3):128-132.
    Analysis of microtubule proteins from several sources has revealed a molecular complexity consistent with the proposed multi‐functional nature of tubulin and microtubule‐associated proteins (MAP). Less certain is the actual range of functions attributable to microtubules and how the variability exhibited by the microtubule proteins translates into functional specificity. In spite of the conceptual difficulties, an exciting picture of structure/function integration is emerging from the study of microtubules.
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  8.  23
    Theoretical evidence that more microtubules reach the cortex at the pole than at the equator during anaphase in sea urchin eggs.Tomoyoshi Yoshigaki - 2003 - Acta Biotheoretica 51 (1):43-53.
    Astral microtubules are rapidly elongated during anaphase and telophase in sea urchin eggs. The number of microtubules extending to the cell surface was calculated with a computer. For the calculations, microtubules were assumed to radiate from the astral center uniformly over angles. Although microtubules from two asters freely overlapped around the equator, the number per the unit area, i.e. the surface density, was larger in the polar region than in the equatorial region. The ratio of the theoretically calculated numbers in (...)
    Direct download  
     
    Export citation  
     
    Bookmark  
  9.  34
    Microtubules and specification of the dorsoventral axis in frog embryos.Richard P. Elinson - 1989 - Bioessays 11 (5):124-127.
    The body plan of the frog is set‐up by a rearrangement of the egg cytoplasm shortly after fertilization. Microtubules play several roles in this critical developmental event.
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  10.  49
    Mechanisms, microtubules, and the mind.Roger Penrose - 1994 - Journal of Consciousness Studies 1 (2):241-49.
    The following is an edited version of Roger Penrose's lecture at the Fifth Mind and Brain Symposium at the Institute of Psychiatry, London, on 29 October 1994, introducing the themes of his recent book Shadows of the Mind. The talk begins by outlining some options for the modelling of the relationship between consciousness and computation, and provides evidence for a model in which it is not possible even in principle to simulate mathematical understanding computationally. It is argued that mathematical understanding (...)
    Direct download  
     
    Export citation  
     
    Bookmark   5 citations  
  11.  20
    Dynamic instability of microtubules.L. U. Cassimeris, R. A. Walker, N. K. Pryer & E. D. Salmon - 1987 - Bioessays 7 (4):149-154.
    Recent evidence shows that dynamic instability is the dominant mechanism for the assembly of pure tubulin in vitro and for the great majority of microtubules in the mitotic spindle and the interphase cytoplasmic microtubule complex. The basic concepts of this model provide a framework for future characterization of the molecular basis of spatial and temporal regulation of microtubule dynamics in the cell and the function of microtubule dynamics in motile processes such as chromosome movement.
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  12.  18
    The Mechanical Role of Microtubules in Tissue Remodeling.Maja Matis - 2020 - Bioessays 42 (5):1900244.
    During morphogenesis, tissues undergo extensive remodeling to get their final shape. Such precise sculpting requires the application of forces generated within cells by the cytoskeleton and transmission of these forces through adhesion molecules within and between neighboring cells. Within individual cells, microtubules together with actomyosin filaments and intermediate filaments form the composite cytoskeleton that controls cell mechanics during tissue rearrangements. While studies have established the importance of actin‐based mechanical forces that are coupled via intercellular junctions, relatively little is known about (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  13.  10
    Ordering microtubules.Leah T. Haimo - 1997 - Bioessays 19 (7):547-550.
    How do cells order their cytoplasm? While microtubule organizing centers have long been considered essential to conferring order by virtue of their microtubule nucleating activity, attention has currently refocused on the role that microtubule motors play in organizing microtubules. An intriguing set of recent findings(1) reveals that cell fragments, lacking microtubule organizing centers, rapidly organize microtubules into a radial array during organelle transport driven by the microtubule motor, cytoplasmic dynein. Further, interaction of radial microtubules with (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  14.  95
    Quantum Walks in Brain Microtubules—A Biomolecular Basis for Quantum Cognition?Stuart Hameroff - 2014 - Topics in Cognitive Science 6 (1):91-97.
    Cognitive decisions are best described by quantum mathematics. Do quantum information devices operate in the brain? What would they look like? Fuss and Navarro () describe quantum lattice registers in which quantum superpositioned pathways interact (compute/integrate) as ‘quantum walks’ akin to Feynman's path integral in a lattice (e.g. the ‘Feynman quantum chessboard’). Simultaneous alternate pathways eventually reduce (collapse), selecting one particular pathway in a cognitive decision, or choice. This paper describes how quantum walks in a Feynman chessboard are conceptually identical (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  15.  13
    Cell‐cell signalling, microtubule organization and RNA localization: Is PKA a link?Paul Lasko - 1995 - Bioessays 17 (2):105-107.
    Specification of the anterior‐posterior axis of the Drosophila embryo is brought about by the asymmetric localization of specific maternally expressed RNAs and proteins within the oocyte. While many of these localized molecules have been identified and progress has been made towards understanding their functions, how the localization process is instigated remains unclear. A recent paper reports that protein kinase A (PKA) activity is essential for many of these RNA localizations and for the correct polarization of the microtubule cytoskeleton(1). These (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  16. Microtubules in Consciousness and Cognition: Could Transport of Receptors and mRNA be Involved.N. Woolf - 2004 - Journal of Consciousness Studies:11--12.
  17.  12
    Microtubules in the cerebral cortex: role in memory and consciousness.Nancy J. Woolf - 2006 - In Jack A. Tuszynski (ed.), The Emerging Physics of Consciousness. Springer Verlag. pp. 49--94.
  18.  6
    Restriction of intraflagellar transport to some microtubule doublets: An opportunity for cilia diversification?Adeline Mallet & Philippe Bastin - 2022 - Bioessays 44 (7):2200031.
    Cilia are unique eukaryotic organelles and exhibit remarkable conservation across evolution. Nevertheless, very different types of configurations are encountered, raising the question of their evolution. Cilia are constructed by intraflagellar transport (IFT), the movement of large protein complexes or trains that deliver cilia components to the distal tip for assembly. Recent data revealed that IFT trains are restricted to some but not all nine doublet microtubules in the protist Trypanosoma brucei. Here, we propose that restricted positioning of IFT trains could (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  19.  3
    The gamma‐tubulin ring complex: Deciphering the molecular organization and assembly mechanism of a major vertebrate microtubule nucleator.Anna Böhler, Bram J. A. Vermeulen, Martin Würtz, Erik Zupa, Stefan Pfeffer & Elmar Schiebel - 2021 - Bioessays 43 (8):2100114.
    Microtubules are protein cylinders with functions in cell motility, signal sensing, cell organization, intracellular transport, and chromosome segregation. One of the key properties of microtubules is their dynamic architecture, allowing them to grow and shrink in length by adding or removing copies of their basic subunit, the heterodimer αβ‐tubulin. In higher eukaryotes, de novo assembly of microtubules from αβ‐tubulin is initiated by a 2 MDa multi‐subunit complex, the gamma‐tubulin ring complex (γ‐TuRC). For many years, the structure of the γ‐TuRC and (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  20.  10
    Meiosis, mitosis and microtubule motors.Kenneth E. Sawin & Sharyn A. Endow - 1993 - Bioessays 15 (6):399-407.
    A framework for understanding the complex movements of mitosis and meiosis has been provided by the recent discovery of microtubule motor proteins, required for the proper distribution of chromosomes or the structural integrity of the mitotic or meiotic spindle. Although overall features of mitosis and meiosis are often assumed to be similar in mechanism, it is now clear that they differ in several important aspects. These include spindle structure and assembly, and timing of chromosome segregation to opposite poles. Here (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  21.  3
    Mitotic poleward flux: Finding balance between microtubule dynamics and sliding.Marin Barisic & Girish Rajendraprasad - 2021 - Bioessays 43 (8):2100079.
    Continuous poleward motion of microtubules in metazoan mitotic spindles has been fascinating generations of cell biologists over the last several decades. In human cells, this so‐called poleward flux was recently shown to be driven by the coordinated action of four mitotic kinesins. The sliding activities of kinesin‐5/EG5 and kinesin‐12/KIF15 are sequentially supported by kinesin‐7/CENP‐E at kinetochores and kinesin‐4/KIF4A on chromosome arms, with the individual contributions peaking during prometaphase and metaphase, respectively. Although recent data elucidate the molecular mechanism underlying this cellular (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  22.  9
    So It Was Microtubules After All?J. C. W. Edwards - 2015 - Journal of Consciousness Studies 22 (7-8):226-232.
  23.  32
    Numerical simulations of microtubule self-organisation by reaction and diffusion.Nicolas Glade, Jacques Demongeot & James Tabony - 2002 - Acta Biotheoretica 50 (4):239-268.
    This article addresses the physical chemical processes underlying biological self-organisation by which a homogenous solution of reacting chemicals spontaneously self-organises. Theoreticians have predicted that self-organisation can arise from a coupling of reactive processes with molecular diffusion. In addition, the presence of an external field, such as gravity, at a critical moment early in the process may determine the morphology that subsequently develops. The formation, in-vitro, of microtubules, a constituent of the cellular skeleton, shows this type of behaviour. The preparations spontaneously (...)
    Direct download  
     
    Export citation  
     
    Bookmark   1 citation  
  24. Consciousness, microtubules and the quantum world.Stuart Hameroff - manuscript
    Hameroff: I became interested in understanding consciousness as an undergraduate at the University of Pittsburgh in the late 60's. In my third year of medical school at Hahnemann in Philadelphia I did a research elective in professor Ben Kahn's hematology-oncology lab. They were studying various types of malignant blood cells, and I became interested in mitosis-looking under the microscope at normal and abnormal cell division. I became fascinated by centrioles and mitotic spindles pulling apart the chromosomes, doing this little dance, (...)
     
    Export citation  
     
    Bookmark  
  25.  4
    Swap and stop – Kinetochores play error correction with microtubules.Harinath Doodhi & Tomoyuki U. Tanaka - 2022 - Bioessays 44 (5):2100246.
    Correct chromosome segregation in mitosis relies on chromosome biorientation, in which sister kinetochores attach to microtubules from opposite spindle poles prior to segregation. To establish biorientation, aberrant kinetochore–microtubule interactions must be resolved through the error correction process. During error correction, kinetochore–microtubule interactions are exchanged (swapped) if aberrant, but the exchange must stop when biorientation is established. In this article, we discuss recent findings in budding yeast, which have revealed fundamental molecular mechanisms promoting this “swap and stop” process for (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  26.  15
    Regulation of meiotic maturation in the mammalian oocyte: Inteplay between exogenous cues and the microtubule cytoskeleton.David F. Albertini - 1992 - Bioessays 14 (2):97-103.
    Mammalian oocytes exhibit a series of cell cycle transitions that coordinate the penultimate events of meiosis with the onset of embryogenesis at fertilization. The execution of these cell cycle transitions, at G2/M of meiosis‐I and metaphase/anaphase of meiosis I and II, involve both biosynthetic and post‐translational modifications that directly modulate centrosome and microtubule behavior. Specifically, somatic cells alter the signal transduction pathways in the oocyte and influence the expression of maturation promoting factor (MPF) and cytostatic factor (CSF) activity through (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  27.  6
    Beyond the GTP‐cap: Elucidating the molecular mechanisms of microtubule catastrophe.Veronica J. Farmer & Marija Zanic - 2023 - Bioessays 45 (1):2200081.
    Almost 40 years since the discovery of microtubule dynamic instability, the molecular mechanisms underlying microtubule dynamics remain an area of intense research interest. The “standard model” of microtubule dynamics implicates a “cap” of GTP‐bound tubulin dimers at the growing microtubule end as the main determinant of microtubule stability. Loss of the GTP‐cap leads to microtubule “catastrophe,” a switch‐like transition from microtubule growth to shrinkage. However, recent studies, using biochemical in vitro reconstitution, cryo‐EM, and (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  28.  24
    Physical Limits on the Precision of Mitotic Spindle Positioning by Microtubule Pushing forces.Jonathon Howard & Carlos Garzon-Coral - 2017 - Bioessays 39 (11):1700122.
    Tissues are shaped and patterned by mechanical and chemical processes. A key mechanical process is the positioning of the mitotic spindle, which determines the size and location of the daughter cells within the tissue. Recent force and position-fluctuation measurements indicate that pushing forces, mediated by the polymerization of astral microtubules against­ the cell cortex, maintain the mitotic spindle at the cell center in Caenorhabditis elegans embryos. The magnitude of the centering forces suggests that the physical limit on the accuracy and (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  29.  19
    Physical Limits on the Precision of Mitotic Spindle Positioning by Microtubule Pushing forces.Jonathon Howard & Carlos Garzon-Coral - 2017 - Bioessays 39 (11):1700122.
    Tissues are shaped and patterned by mechanical and chemical processes. A key mechanical process is the positioning of the mitotic spindle, which determines the size and location of the daughter cells within the tissue. Recent force and position-fluctuation measurements indicate that pushing forces, mediated by the polymerization of astral microtubules against­ the cell cortex, maintain the mitotic spindle at the cell center in Caenorhabditis elegans embryos. The magnitude of the centering forces suggests that the physical limit on the accuracy and (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  30. Quantum computation in brain microtubules.Stuart R. Hameroff - 2002 - Physical Review E 65 (6):1869--1896.
    Proposals for quantum computation rely on superposed states implementing multiple computations simultaneously, in parallel, according to quantum linear superposition (e.g., Benioff, 1982; Feynman, 1986; Deutsch, 1985, Deutsch and Josza, 1992). In principle, quantum computation is capable of specific applications beyond the reach of classical computing (e.g., Shor, 1994). A number of technological systems aimed at realizing these proposals have been suggested and are being evaluated as possible substrates for quantum computers (e.g. trapped ions, electron spins, quantum dots, nuclear spins, etc., (...)
     
    Export citation  
     
    Bookmark   52 citations  
  31. Quantum coherence in microtubules: A neural basis for emergent consciousness?Stuart R. Hameroff - 1994 - Journal of Consciousness Studies 1 (1):91-118.
    The paper begins with a general introduction to the nature of human consciousness and outlines several different philosophical approaches. A critique of traditional reductionist and dualist positions is offered and it is suggested that consciousness should be viewed as an emergent property of physical systems. However, although consciousness has its origin in distributed brain processes it has macroscopic properties - most notably the `unitary sense of self', non-deterministic free will, and non-algorithmic `intuitive' processing - which can best be described by (...)
    Direct download  
     
    Export citation  
     
    Bookmark   32 citations  
  32.  15
    γ‐Tubulin: The hub of cellular microtubule assemblies.Harish C. Joshi - 1993 - Bioessays 15 (10):637-643.
    In eukaryotic cells a specialized organelle called the microtubule organizing center (MTOC) is responsible for disposition of microtubules in a radial, polarized array in interphase cells and in the spindle in mitotic cells. Eukaryotic cells across different species, and different cell types within single species, have morphologically diverse MTOCs, but these share a common function of organizing microtubule arrays. MTOCs effect microtubule organization by initiating microtubule assembly and anchoring microtubules by their slowly growing minus ends, thus (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  33.  9
    My favourite organelle. The microtubule‐organizing centre.John Tucker - 1992 - Bioessays 14 (12):861-867.
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  34.  9
    Chromosomes, kinetochores and the microtubule connection.B. R. Brinkley - 1991 - Bioessays 13 (12):675-681.
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  35.  36
    Loss and Rebirth of the Animal Microtubule Organizing Center: How Maternal Expression of Centrosomal Proteins Cooperates with the Sperm Centriole in Zygotic Centrosome Reformation.Daigo Inoue, Joachim Wittbrodt & Oliver J. Gruss - 2018 - Bioessays 40 (4):1700135.
    Centrosomes are the main microtubule organizing centers in animal cells. In particular during embryogenesis, they ensure faithful spindle formation and proper cell divisions. As metazoan centrosomes are eliminated during oogenesis, they have to be reassembled upon fertilization. Most metazoans use the sperm centrioles as templates for new centrosome biogenesis while the egg's cytoplasm re-prepares all components for on-going centrosome duplication in rapidly dividing embryonic cells. We discuss our knowledge and the experimental challenges to analyze zygotic centrosome reformation, which requires (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  36.  58
    On the Nature and Shape of Tubulin Trails: Implications on Microtubule Self-Organization.Nicolas Glade - 2012 - Acta Biotheoretica 60 (1-2):55-82.
    Microtubules, major elements of the cell skeleton are, most of the time, well organized in vivo, but they can also show self-organizing behaviors in time and/or space in purified solutions in vitro. Theoretical studies and models based on the concepts of collective dynamics in complex systems, reaction–diffusion processes and emergent phenomena were proposed to explain some of these behaviors. In the particular case of microtubule spatial self-organization, it has been advanced that microtubules could behave like ants, self-organizing by ‘talking (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  37.  64
    Microtubules, anesthetics, and quantum consciousness:An interview with Stuart Hameroff. [REVIEW]Liane Gabora - 1999 - Foundations of Science 4 (2):205-223.
  38.  19
    Dynein motors: How AAA+ ring opening and closing coordinates microtubule binding and linker movement.Helgo Schmidt - 2015 - Bioessays 37 (5):532-543.
    Dyneins are a family of motor proteins that move along the microtubule. Motility is generated in the motor domain, which consists of a ring of six AAA+ (ATPases associated with diverse cellular activities) domains, the linker and the microtubule‐binding domain (MTBD). The cyclic ATP‐hydrolysis in the AAA+ ring causes the remodelling of the linker, which creates the necessary force for movement. The production of force has to be synchronized with cycles of microtubule detachment and rebinding to efficiently (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  39.  10
    Stabilization and post‐translational modification of microtubules during cellular morphogenesis.Jeannette C. Bulinski & Gregg G. Gundersen - 1991 - Bioessays 13 (6):285-293.
    This review discusses the possible role of α‐tubulin detyrosination, a reversible post‐translational modification that occurs at the protein's C‐terminus, in cellular morphogenesis. Higher eukaryotic cells possess a cyclic post‐translational mechanism by which dynamic microtubules are differentiated from their more stable counterparts; a tubulin‐specific carboxypeptidase detyrosinates tubulin protomers within microtubules, while the reverse reaction, tyrosination, is performed on the soluble protomer by a second tubulin‐specific enzyme, tubulin tyrosine ligase. In general, the turnover of microtubules in undifferentiated, proliferating cells is so rapid (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  40.  15
    Kinesin proteins: A phylum of motors for microtubule‐based motility.Jonathan D. Moore & Sharyn A. Endow - 1996 - Bioessays 18 (3):207-219.
    The cellular processes of transport, division and, possibly, early development all involve microtubule‐based motors. Recent work shows that, unexpectedly, many of these cellular functions are carried out by different types of kinesin and kinesin‐related motor proteins. The kinesin proteins are a large and rapidly growing family of microtubule‐motor proteins that share a 340‐amino‐acid motor domain. Phylogenetic analysis of the conserved motor domains groups the kinesin proteins into a number of subfamilies, the members of which exhibit a common molecular (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  41.  9
    Highway to hell‐thy meiotic divisions: Chromosome passenger complex functions driven by microtubules.Kim S. McKim - 2022 - Bioessays 44 (1):2100202.
    The chromosome passenger complex (CPC) localizes to chromosomes and microtubules, sometimes simultaneously. The CPC also has multiple domains for interacting with chromatin and microtubules. Interactions between the CPC and both the chromatin and microtubules is important for spindle assembly and error correction. Such dual chromatin‐microtubule interactions may increase the concentration of the CPC necessary for efficient kinase activity while also making it responsive to specific conditions or structures in the cell. CPC‐microtubule dependent functions are considered in the context (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  42. Orchestrated objective reduction of quantum coherence in brain microtubules: The "orch OR" model for consciousness.Roger Penrose & Stuart Hameroff - 1996 - Mathematics and Computers in Simulation 40:453-480.
    Features of consciousness difficult to understand in terms of conventional neuroscience have evoked application of quantum theory, which describes the fundamental behavior of matter and energy. In this paper we propose that aspects of quantum theory (e.g. quantum coherence) and of a newly proposed physical phenomenon of quantum wave function "self-collapse"(objective reduction: OR -Penrose, 1994) are essential for consciousness, and occur in cytoskeletal microtubules and other structures within each of the brain's neurons. The particular characteristics of microtubules suitable for quantum (...)
     
    Export citation  
     
    Bookmark   8 citations  
  43. Search for quantum and classical modes of information processing in microtubules: Implications for “the living state”.Stuart Hameroff - manuscript
    Dynamical activities within living eukaryotic cells are organized by microtubules, main structural components of the cytoskeleton and cylindrical polymers of the protein tubulin. Evidence and theoretical models suggest that states of tubulin may play the role of “bits” in classical microtubule computational automata. The advent of quantum information devices, key roles played by quantum processes in protein dynamics, and coherent ordering in the cell cytoplasm further suggest that microtubules may function as quantum computational devices, and that mesoscopic and macroscopic (...)
     
    Export citation  
     
    Bookmark  
  44. Orchestrated reduction of quantum coherence in brain microtubules: A model for consciousness.Stuart R. Hameroff & Roger Penrose - 1996 - In Stuart R. Hameroff, Alfred W. Kaszniak & Alwyn Scott (eds.), Toward a Science of Consciousness: The First Tucson Discussions and Debates. MIT Press.
  45.  6
    Balanced regulation of microtubule dynamics during the cell cycle: a contemporary view. [REVIEW]Sue Deuchars & Jim Deuchars - 1999 - Bioessays 21 (4):363-363.
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  46.  5
    Cilia are not created equal—restriction of IFT on microtubule tracks for cilia diversification.Junmin Pan - 2022 - Bioessays 44 (7):2200082.
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  47.  15
    Stopped in its tracks: Negative regulation of the dynein motor by the yeast protein She1.Jeffrey K. Moore - 2013 - Bioessays 35 (8):677-682.
    How do cells direct the microtubule motor protein dynein to move cellular components to the right place at the right time? Recent studies in budding yeast shed light on a new mechanism for directing dynein, involving the protein She1. She1 restricts where and when dynein moves the nucleus and mitotic spindle. Experiments with purified proteins show that She1 binds to microtubules and inhibits dynein by stalling the motor on its track. Here I describe what we have learned so far (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  48.  14
    Tubulin deacetylase NDST3 modulates lysosomal acidification: Implications in neurological diseases.Qing Tang, Xiangning Li & Jiou Wang - 2022 - Bioessays 44 (11):2200110.
    Neurological diseases (NDs), featured by progressive dysfunctions of the nervous system, have become a growing burden for the aging populations. N‐Deacetylase and N‐sulfotransferase 3 (NDST3) is known to catalyze deacetylation and N‐sulfation on disaccharide substrates. Recently, NDST3 is identified as a novel deacetylase for tubulin, and its newly recognized role in modulating microtubule acetylation and lysosomal acidification provides fresh insights into ND therapeutic approaches using NDST3 as a target. Microtubule acetylation and lysosomal acidification have been reported to be (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  49. The Brain Is Both Neurocomputer and Quantum Computer.Stuart R. Hameroff - 2007 - Cognitive Science 31 (6):1035-1045.
    _Figure 1. Dendrites and cell bodies of schematic neurons connected by dendritic-dendritic gap junctions form a laterally connected input_ _layer (“dendritic web”) within a neurocomputational architecture. Dendritic web dynamics are temporally coupled to gamma synchrony_ _EEG, and correspond with integration phases of “integrate and fire” cycles. Axonal firings provide input to, and output from, integration_ _phases (only one input, and three output axons are shown). Cell bodies/soma contain nuclei shown as black circles; microtubule networks_ _pervade the cytoplasm. According to (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   15 citations  
  50.  12
    Looping in on Ndc80 – How does a protein loop at the kinetochore control chromosome segregation?Jakob Nilsson - 2012 - Bioessays 34 (12):1070-1077.
    Segregation of chromosomes during mitosis requires the interaction of dynamic microtubules with the kinetochore, a large protein structure established on the centromere region of sister chromatids. The core microtubule‐binding activity of the kinetochore resides in the KMN network, an outer kinetochore complex. As part of the KMN network, the Ndc80 complex, which is composed of Ndc80, Nuf2, Spc24, and Spc25, is able to bind directly to microtubules and has the ability to track with depolymerizing microtubules to produce chromosome movement. (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   2 citations  
1 — 50 / 146