Numerical simulations of microtubule self-organisation by reaction and diffusion

Acta Biotheoretica 50 (4):239-268 (2002)
  Copy   BIBTEX

Abstract

This article addresses the physical chemical processes underlying biological self-organisation by which a homogenous solution of reacting chemicals spontaneously self-organises. Theoreticians have predicted that self-organisation can arise from a coupling of reactive processes with molecular diffusion. In addition, the presence of an external field, such as gravity, at a critical moment early in the process may determine the morphology that subsequently develops. The formation, in-vitro, of microtubules, a constituent of the cellular skeleton, shows this type of behaviour. The preparations spontaneously self-organise by reaction-diffusion and the morphology that develops depends upon the presence of gravity at a critical bifurcation time early in the process. Here, we present numerical simulations of a population of microtubules that reproduce this behaviour. Microtubules can grow from one end whilst shrinking from the other. The shrinking end leaves behind a chemical trail of high tubulin concentration. Neighbouring microtubules preferentially grow into these regions, whilst avoiding regions of low tubulin concentration. The chemical trails produced by individual microtubules thus activate and inhibit the formation of neighbouring microtubules and this progressively leads to self-organisation. Gravity acts by way of its directional interaction with the macroscopic density fluctuations present in the solution arising from microtubule disassembly.

Links

PhilArchive



    Upload a copy of this work     Papers currently archived: 91,628

External links

Setup an account with your affiliations in order to access resources via your University's proxy server

Through your library

Analytics

Added to PP
2009-01-28

Downloads
31 (#512,936)

6 months
3 (#961,692)

Historical graph of downloads
How can I increase my downloads?

References found in this work

Kinetic theory of living pattern.Lionel G. Harrison - 1993 - New York: Cambridge University Press.

Add more references