Microtubule Plus End Dynamics − Do We Know How Microtubules Grow?

Bioessays 41 (3):1800194 (2019)
  Copy   BIBTEX

Abstract

Microtubules form a highly dynamic filament network in all eukaryotic cells. Individual microtubules grow by tubulin dimer subunit addition and frequently switch between phases of growth and shortening. These unique dynamics are powered by GTP hydrolysis and drive microtubule network remodeling, which is central to eukaryotic cell biology and morphogenesis. Yet, our knowledge of the molecular events at growing microtubule ends remains incomplete. Here, recent ultrastructural, biochemical and cell biological data are integrated to develop a realistic model of growing microtubule ends comprised of structurally distinct but biochemically overlapping zones. Proteins that recognize microtubule lattice conformations associated with specific tubulin guanosine nucleotide states may independently control major structural transitions at growing microtubule ends. A model is proposed in which tubulin dimer addition and subsequent closure of the MT wall are optimized in cells to achieve rapid physiological microtubule growth.

Links

PhilArchive



    Upload a copy of this work     Papers currently archived: 91,219

External links

Setup an account with your affiliations in order to access resources via your University's proxy server

Through your library

Similar books and articles

Gaps in Penrose's toiling.Rick Grush & Patricia Smith Churchland - 1995 - Journal of Consciousness Studies 2 (1):10-29.

Analytics

Added to PP
2019-02-07

Downloads
18 (#785,610)

6 months
1 (#1,459,555)

Historical graph of downloads
How can I increase my downloads?

Citations of this work

No citations found.

Add more citations

References found in this work

No references found.

Add more references