Results for 'Quantum measurement theory'

976 found
Order:
  1.  65
    Quantum Covers in Quantum Measure Theory.Sumati Surya & Petros Wallden - 2010 - Foundations of Physics 40 (6):585-606.
    Sorkin’s recent proposal for a realist interpretation of quantum theory, the anhomomorphic logic or coevent approach, is based on the idea of a “quantum measure” on the space of histories. This is a generalisation of the classical measure to one which admits pair-wise interference and satisfies a modified version of the Kolmogorov probability sum rule. In standard measure theory the measure on the base set Ω is normalised to one, which encodes the statement that “Ω happens”. (...)
    Direct download (8 more)  
     
    Export citation  
     
    Bookmark   6 citations  
  2.  73
    Nondemolition principle of quantum measurement theory.V. P. Belavkin - 1994 - Foundations of Physics 24 (5):685-714.
    We give an explicit axiomatic formulation of the quantum measurement theory which is free of the projection postulate. It is based on the generalized nondemolition principle applicable also to the unsharp, continuous-spectrum and continuous-in-time observations. The “collapsed state-vector” after the “objectification” is simply treated as a random vector of the a posterioristate given by the quantum filtering, i.e., the conditioning of the a prioriinduced state on the corresponding reduced algebra. The nonlinear phenomenological equation of “continuous spontaneous (...)
    Direct download (9 more)  
     
    Export citation  
     
    Bookmark   4 citations  
  3.  38
    A paradox in quantum measurement theory?Andrew Holster - manuscript
    This paper outlines a ‘paradox’ in quantum measurement theory, illustrated with two different types of systems. If this paradox cannot be resolved in ordinary quantum mechanics (as I currently think), it is alarming. If it can be resolved, it can be added to a long list of examples that show the internal consistency of quantum mechanics, and in this case I hope the correct analysis will be an interesting example for students. The immediate paradox involves (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  4.  6
    Pointers for Quantum Measurement Theory.Jay Lawrence - 2023 - Foundations of Physics 53 (4):1-17.
    In the iconic measurements of atomic spin-1/2 or photon polarization, one employs two separate noninteracting detectors. Each detector is binary, registering the presence or absence of the atom or the photon. For measurements on a d-state particle, we recast the standard von Neumann measurement formalism by replacing the familiar pointer variable with an array of such detectors, one for each of the d possible outcomes. We show that the unitary dynamics of the pre-measurement process restricts the detector outputs (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  5.  42
    The standard model of quantum measurement theory: History and applications. [REVIEW]Paul Busch & Pekka J. Lahti - 1996 - Foundations of Physics 26 (7):875-893.
    The standard model of the quantum theory of measurement is based on an interaction Hamiltonian in which the observable to be measured is multiplied by some observable of a probe system. This simple Ansatz has proved extremely fruitful in the development of the foundations of quantum mechanics. While the ensuing type of models has often been argued to be rather artificial, recent advances in quantum optics have demonstrated their principal and practical feasibility. A brief historical (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   6 citations  
  6.  20
    Contexts in Quantum Measurement Theory.Stanley Gudder - 2019 - Foundations of Physics 49 (6):647-662.
    State transformations in quantum mechanics are described by completely positive maps which are constructed from quantum channels. We call a finest sharp quantum channel a context. The result of a measurement depends on the context under which it is performed. Each context provides a viewpoint of the quantum system being measured. This gives only a partial picture of the system which may be distorted and in order to obtain a total accurate picture, various contexts need (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  7.  22
    Quantum measurement and algebraic quantum field theories.B. DeFacio - 1976 - Foundations of Physics 6 (2):185-192.
    It is shown that the physics and semantics of quantum measurement provide a natural interpretation of the weak neighborhoods of the states on observable algebras without invoking any idea of “a reading error” or “a measured range.” Then the state preparation process in quantum measurement theory is shown to give the normal (or locally normal) states on the observable algebra. Some remarks are made concerning the physical implications of normal states for systems with an infinite (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  8.  27
    New techniques and ideas in quantum measurement theory.Daniel M. Greenberger (ed.) - 1986 - New York, N.Y.: New York Academy of Sciences.
  9.  9
    Quantum Measurement.Paul Busch - 2016 - Cham: Imprint: Springer. Edited by Pekka Lahti, Juha-Pekka Pellonpää & Kari Ylinen.
    This is a book about the Hilbert space formulation of quantum mechanics and its measurement theory. It contains a synopsis of what became of the Mathematical Foundations of Quantum Mechanics since von Neumann's classic treatise with this title. Fundamental non-classical features of quantum mechanics-indeterminacy and incompatibility of observables, unavoidable measurement disturbance, entanglement, nonlocality-are explicated and analysed using the tools of operational quantum theory. The book is divided into four parts: 1. Mathematics provides (...)
    No categories
    Direct download  
     
    Export citation  
     
    Bookmark   8 citations  
  10.  13
    A Quantum Field Theory View of Interaction Free Measurements.Filipe C. R. Barroso & Orfeu Bertolami - 2020 - Foundations of Physics 50 (8):764-771.
    We propose a Quantum Field Theory description of beams on a Mach–Zehnder interferometer and apply the method to describe Interaction Free Measurements, concluding that there is a change of momentum of the fields in IFMs. Analysing the factors involved in the probability of emission of low-energy photons, we argue that they do not yield meaningful contributions to the probabilities of the IFMs.
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  11.  29
    The Quantum Field Theory (QFT) Dual Paradigm in Fundamental Physics and the Semantic Information Content and Measure in Cognitive Sciences.Gianfranco Basti - 2017 - In Gordana Dodig-Crnkovic & Raffaela Giovagnoli (eds.), Representation of Reality: Humans, Other Living Organism and Intelligent Machines. Heidelberg: Springer.
    In this paper we explore the possibility of giving a justification of the “semantic information” content and measure, in the framework of the recent coalgebraic approach to quantum systems and quantum computation, extended to QFT systems. In QFT, indeed, any quantum system has to be considered as an “open” system, because it is always interacting with the background fluctuations of the quantum vacuum. Namely, the Hamiltonian in QFT always includes the quantum system and its inseparable (...)
    Direct download  
     
    Export citation  
     
    Bookmark  
  12. Quantum Information Theory & the Foundations of Quantum Mechanics.Christopher Gordon Timpson - 2004 - Oxford, GB: Oxford University Press.
    Quantum Information Theory and the Foundations of Quantum Mechanics is a conceptual analysis of one of the most prominent and exciting new areas of physics, providing the first full-length philosophical treatment of quantum information theory and the questions it raises for our understanding of the quantum world. -/- Beginning from a careful, revisionary, analysis of the concepts of information in the everyday and classical information-theory settings, Christopher G. Timpson argues for an ontologically deflationary (...)
    Direct download (7 more)  
     
    Export citation  
     
    Bookmark   46 citations  
  13.  13
    A Realistic Theory of Quantum Measurement.Alan K. Harrison - 2022 - Foundations of Physics 52 (1):1-32.
    We propose that the ontic understanding of quantum mechanics can be extended to a fully realistic theory that describes the evolution of the wavefunction at all times, including during a measurement. In such an approach the wave equation should reduce to the standard wave equation when there is no measurement, and describe state reduction when the system is measured. The general wave equation must be nonlinear and nonlocal, and we require it to be time-symmetric; consequently, this (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  14.  61
    On the nature of measurement records in relativistic quantum field theory.Jeffrey A. Barrett - unknown
    A resolution of the quantum measurement problem would require one to explain how it is that we end up with determinate records at the end of our measurements. Metaphysical commitments typically do real work in such an explanation. Indeed, one should not be satisfied with one's metaphysical commitments unless one can provide some account of determinate measurement records. I will explain some of the problems in getting determinate records in relativistic quantum field theory and pay (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   10 citations  
  15. Quantum Information Theory and the Foundations of Quantum Mechanics.Christopher Gordon Timpson - 2013 - Oxford, GB: Oxford University Press.
    Christopher G. Timpson provides the first full-length philosophical treatment of quantum information theory and the questions it raises for our understanding of the quantum world. He argues for an ontologically deflationary account of the nature of quantum information, which is grounded in a revisionary analysis of the concepts of information.
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark   58 citations  
  16. How is Quantum Field Theory Possible?Sunny Y. Auyang - 1995 - New York: Oxford University Press.
    Quantum field theory (QFT) combines quantum mechanics with Einstein's special theory of relativity and underlies elementary particle physics. This book presents a philosophical analysis of QFT. It is the first treatise in which the philosophies of space-time, quantum phenomena, and particle interactions are encompassed in a unified framework. Describing the physics in nontechnical terms, and schematically illustrating complex ideas, the book also serves as an introduction to fundamental physical theories. The philosophical interpretation both upholds the (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   79 citations  
  17.  29
    A Quantum Measurement Paradigm for Educational Predicates: Implications for validity in educational measurement.Ian Cantley - 2017 - Educational Philosophy and Theory 49 (4).
    The outcomes of educational assessments undoubtedly have real implications for students, teachers, schools and education in the widest sense. Assessment results are, for example, used to award qualifications that determine future educational or vocational pathways of students. The results obtained by students in assessments are also used to gauge individual teacher quality, to hold schools to account for the standards achieved by their students, and to compare international education systems. Given the current high-stakes nature of educational assessment, it is imperative (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   3 citations  
  18.  26
    Quantum measurement as a communication with nature.John F. Cyranski - 1978 - Foundations of Physics 8 (11-12):805-822.
    It is assumed that experiments yield results that are not isomorphic with reality, but represent a distorted image of reality. Reality is related to observation via a communication channel of finite capacity. Quantum uncertainties are due to the bound on the amount of information available. Use is made of recent results from information and communication theories.
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   4 citations  
  19. Quantum Measurement.Es Polzik & Crj Thompson - 1995 - In John Archibald Wheeler, Daniel M. Greenberger & Anton Zeilinger (eds.), Fundamental problems in quantum theory: a conference held in honor of Professor John A. Wheeler. New York: New York Academy of Sciences.
  20. On the plurality of quantum theories: Quantum theory as a framework and its implications for the quantum measurement problem.David Wallace - 2020 - In Steven French & Juha Saatsi (eds.), Scientific Realism and the Quantum. Oxford: Oxford University Press.
    `Quantum theory' is not a single physical theory but a framework in which many different concrete theories fit. As such, a solution to the quantum measurement problem ought to provide a recipe to interpret each such concrete theory, in a mutually consistent way. But with the exception of the Everett interpretation, the mainextant solutions either try to make sense of the abstract framework as if it were concrete, or else interpret one particular quantum (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   17 citations  
  21. The quantum measurement problem: State of play.David Wallace - 2007 - In Dean Rickles (ed.), The Ashgate Companion to Contemporary Philosophy of Physics. Ashgate.
    This is a preliminary version of an article to appear in the forthcoming Ashgate Companion to the New Philosophy of Physics.In it, I aim to review, in a way accessible to foundationally interested physicists as well as physics-informed philosophers, just where we have got to in the quest for a solution to the measurement problem. I don't advocate any particular approach to the measurement problem (not here, at any rate!) but I do focus on the importance of decoherence (...)
    Direct download (6 more)  
     
    Export citation  
     
    Bookmark   21 citations  
  22.  60
    Nonideal quantum measurements.Hans Martens & Willem M. de Muynck - 1990 - Foundations of Physics 20 (3):255-281.
    A partial ordering in the class of observables (∼ positive operator-valued measures, introduced by Davies and by Ludwig) is explored. The ordering is interpreted as a form of nonideality, and it allows one to compare ideal and nonideal versions of the same observable. Optimality is defined as maximality in the sense of the ordering. The framework gives a generalization of the usual (implicit) definition of self-adjoint operators as optimal observables (von Neumann), but it can, in contrast to this latter definition, (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   12 citations  
  23.  1
    Eliminating the ‘Impossible’: Recent Progress on Local Measurement Theory for Quantum Field Theory.Maria Papageorgiou & Doreen Fraser - 2024 - Foundations of Physics 54 (3):1-75.
    Arguments by Sorkin (Impossible measurements on quantum fields. In: Directions in general relativity: proceedings of the 1993 International Symposium, Maryland, vol 2, pp 293–305, 1993) and Borsten et al. (Phys Rev D 104(2), 2021. https://doi.org/10.1103/PhysRevD.104.025012 ) establish that a natural extension of quantum measurement theory from non-relativistic quantum mechanics to relativistic quantum theory leads to the unacceptable consequence that expectation values in one region depend on which unitary operation is performed in a spacelike (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  24.  26
    A derivation of local commutativity from macrocausality using a quantum mechanical theory of measurement.W. M. de Muynck & J. P. H. W. van den Eijnde - 1984 - Foundations of Physics 14 (2):111-146.
    A theory of the joint measurement of quantum mechanical observables is generalized in order to make it applicable to the measurement of the local observables of field theory. Subsequently, the property of local commutativity, which is usually introduced as a postulate, is derived by means of the theory of measurement from a requirement of mutual nondisturbance, which, for local observables performed at a spacelike distance from each other, is interpreted as a requirement of (...)
    No categories
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   4 citations  
  25.  48
    Completely positive mappings in quantum dynamics and measurement theory.Paul Busch & Pekka J. Lahti - 1990 - Foundations of Physics 20 (12):1429-1439.
    The role of completely positive mappings in quantum dynamics and measurement theory is reanalyzed in light of the possibility of a generalized dynamics.
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   3 citations  
  26. Quantum propensiton theory: A testable resolution of the wave/particle dilemma.Nicholas Maxwell - 1988 - British Journal for the Philosophy of Science 39 (1):1-50.
    In this paper I put forward a new micro realistic, fundamentally probabilistic, propensiton version of quantum theory. According to this theory, the entities of the quantum domain - electrons, photons, atoms - are neither particles nor fields, but a new kind of fundamentally probabilistic entity, the propensiton - entities which interact with one another probabilistically. This version of quantum theory leaves the Schroedinger equation unchanged, but reinterprets it to specify how propensitons evolve when no (...)
    Direct download (11 more)  
     
    Export citation  
     
    Bookmark   35 citations  
  27.  69
    Quantum measurement and the program for the unity of science.David C. Scharf - 1989 - Philosophy of Science 56 (4):601-623.
    It is quite extraordinary, philosophically speaking, that according to the orthodox interpretation: (a) quantum mechanics is a complete and comprehensive theory of microphysics, and yet (b) the role of measurement, in quantum mechanics, cannot be analyzed in terms of the collective effects of the microphysical particles making up the apparatus. It follows that, if the orthodox interpretation is correct, the measurement apparatus and its quantum physical effects cannot be accounted for microreductively. This is significant (...)
    Direct download (8 more)  
     
    Export citation  
     
    Bookmark   5 citations  
  28.  34
    Quantum measure spaces.G. Kalmbach - 1990 - Foundations of Physics 20 (7):801-821.
    In this article I present some material of a forthcoming book with the titleQuantum Measures and Spaces. The main theme are generalizations of Gleason's theorem and spaces in which quantum measures exist. Characterizations of such spaces and classifications of their measures are given. The book will contain some supplementary results from the “orthomodular” theory under the heading “Miscellaneous.” It is a sequel to the bookMeasures and Hilbert Lattices of the same author.
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  29. Quantum Measurement, Complexity and Discrete Physics.Martin Leckey - 2003 - arXiv.
    This paper presents a new modified quantum mechanics, Critical Complexity Quantum Mechanics, which includes a new account of wavefunction collapse. This modified quantum mechanics is shown to arise naturally from a fully discrete physics, where all physical quantities are discrete rather than continuous. I compare this theory with the spontaneous collapse theories of Ghirardi, Rimini, Weber and Pearle and discuss some implications of these theories and CCQM for a realist view of the quantum realm.
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  30.  39
    Quantum measurements and macrophysical reality: Epistemological implications of a proposed paradox.G. Tarozzi - 1996 - Foundations of Physics 26 (7):907-917.
    After an outline of the macrorealistic solutions to the difficulties of the measurement theory, a new paradox is proposed and then discussed in the light of three different interpretations of quantum mechanics.
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  31.  55
    Continuous quantum measurements and the action uncertainty principle.Michael B. Mensky - 1992 - Foundations of Physics 22 (9):1173-1193.
    The path-integral approach to quantum theory of continuous measurements has been developed in preceding works of the author. According to this approach the measurement amplitude determining probabilities of different outputs of the measurement can be evaluated in the form of a restricted path integral (a path integral “in finite limits”). With the help of the measurement amplitude, maximum deviation of measurement outputs from the classical one can be easily determined. The aim of the present (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  32. Is the Brain Analogous to a Quantum Measuring Apparatus?Paavo Pylkkänen - 2022 - In Shyam Wuppuluri & Anthony C. Grayling (eds.), Metaphors and Analogies in Sciences and Humanities: Words and Worlds. Cham: Springer Synthese Library. pp. 215-235.
    Researchers have suggested since the early days of quantum theory that there are strong analogies between quantum phenomena and mental phenomena and these have developed into a vibrant new field of quantum cognition during recent decades. After revisiting some early analogies by Niels Bohr and David Bohm, this paper focuses upon Bohm and Hiley’s ontological interpretation of quantum theory which suggests further analogies between quantum phenomena and biological and psychological phenomena, including the proposal (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  33.  11
    Quantum Measurement: Beyond Paradox.Richard Healey & Geoffrey Hellman (eds.) - 1998 - University of Minnesota Press.
    Together with relativity theory, quantum mechanics stands as the conceptual foundation of modern physics. It forms the basis by which we understand the minute workings of the subatomic world. But at its core lies a paradox--it is unmeasurable. This book presents a powerful and energetic new approach to the measurement dilemma.
    No categories
    Direct download  
     
    Export citation  
     
    Bookmark   2 citations  
  34.  26
    Von Neumann’s Theory of Quantum Measurement.Jeffrey Bub - 2001 - Vienna Circle Institute Yearbook 8:63-74.
    In a series of lectures written around 1952, Schrödinger refers to von Neumann’s account of measurement in quantum mechanics as follows:I said quantum physicists bother very little about accounting, according to the accepted law, for the supposed change of the wave-function by measurement. I know of only one attempt in this direction, to which Dr. Balazs recently directed my attention. You find it in John von Neumann’s well-known book. With great acuity he constructs one analytical example. (...)
    Direct download  
     
    Export citation  
     
    Bookmark  
  35.  39
    Measurement theory for physics.John F. Cyranski - 1979 - Foundations of Physics 9 (9-10):641-671.
    A highly abstracted theory of measurement is synthesized from classical measurement theory, fuzzy set theory, generalized information theory, and predicate calculus. The theory does not require specific truth value concepts, nor does it specify what subsets of the reals can be observed, thus avoiding the usual fundamental difficulties. Problems such as the definition of systems, the significance of observations, numerical scales and observables, etc. are examined. The general logico-algebraic approach to quantum/classical physics (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  36.  17
    Sheaf-theoretic representation of quantum measure algebras.Elias Zafiris - 2006 - Journal of Mathematical Physics 47 (9).
    We construct a sheaf-theoretic representation of quantum probabilistic structures, in terms of covering systems of Boolean measure algebras. These systems coordinatize quantum states by means of Boolean coefficients, interpreted as Boolean localization measures. The representation is based on the existence of a pair of adjoint functors between the category of presheaves of Boolean measure algebras and the category of quantum measure algebras. The sheaf-theoretic semantic transition of quantum structures shifts their physical significance from the orthoposet axiomatization (...)
    Direct download  
     
    Export citation  
     
    Bookmark   3 citations  
  37.  45
    Many-Hilbert-spaces theory of quantum measurements.Mikio Namiki - 1988 - Foundations of Physics 18 (1):29-55.
    The many-Hilbert-spaces theory of quantum measurements, which was originally proposed by S. Machida and the present author, is reviewed and developed. Dividing a typical quantum measurement in two successive steps, the first being responsible for spectral decomposition and the second for detection, we point out that the wave packet reduction by measurement takes place at the latter step, through interaction of an object system with one of the local systems of detectors. First we discuss the (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  38.  18
    Situated Observation and the Quantum Measurement Problem.Jeffrey Barrett - 2024 - In Angelo Bassi, Sheldon Goldstein, Roderich Tumulka & Nino Zanghi (eds.), Physics and the Nature of Reality: Essays in Memory of Detlef Dürr. Springer. pp. 355-367.
    A situated observer is an observer as modeled within the world characterized by one’s physical theory. A physical theory arguably only makes empirical predictions if it makes predictions for the records of a situated observer. In this spirit, one has a satisfactory solution to the measurement problem only if one has a formulation of quantum mechanics that makes the right empirical predictions for the records of a situated observer. Bohmian mechanics addresses the measurement problem by (...)
    Direct download  
     
    Export citation  
     
    Bookmark  
  39. Quantum retrocausation: theory and experiment: San Diego, California, USA, 13-14 June 2011.Daniel P. Sheehan (ed.) - 2011 - Melville, N.Y.: American Institute of Physics.
    This conference proceedings would be of interest to theoretical and experimental physicists in the areas of foundations of physics, nature of time, foundations of quantum mechanics, quantum measurement, quantum computation. Philosophers of science and physics. Retrocausation, the process whereby the future affects its past, is central to the modern movement to understand the fundamental physical nature of time. This conference volume presents the most recent theoretical and experimental results at the forefront of the nascent field of (...)
     
    Export citation  
     
    Bookmark  
  40. Computable functions, quantum measurements, and quantum dynamics.M. A. Nielsen - unknown
    Quantum mechanical measurements on a physical system are represented by observables - Hermitian operators on the state space of the observed system. It is an important question whether all observables may be realized, in principle, as measurements on a physical system. Dirac’s influential text ( [1], page 37) makes the following assertion on the question: The question now presents itself – Can every observable be measured? The answer theoretically is yes. In practice it may be very awkward, or perhaps (...)
     
    Export citation  
     
    Bookmark   8 citations  
  41.  55
    Measurement theory (compendium entry).Paul Busch & Pekka Lahti - unknown
    This is an entry to the Compendium of Quantum Physics, edited by F Weinert, K Hentschel and D Greenberger, to be published by Springer-Verlag.
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark  
  42.  15
    Ontological Aspects of Quantum Field Theory.Meinard Kuhlmann, Holger Lyre & Andrew Wayne (eds.) - 2002 - Singapore: World Scientific.
    Quantum field theory provides the framework for many fundamental theories in modern physics, and over the last few years there has been growing interest in its historical and philosophical foundations. This anthology on the foundations of QFT brings together 15 essays by well-known researchers in physics, the philosophy of physics, and analytic philosophy.Many of these essays were first presented as papers at the conference?Ontological Aspects of Quantum Field Theory?, held at the Zentrum fr interdisziplin„re Forschung, Bielefeld, (...)
    Direct download  
     
    Export citation  
     
    Bookmark   17 citations  
  43.  13
    Markovian and Non-Markovian Quantum Measurements.Jennifer R. Glick & Christoph Adami - 2020 - Foundations of Physics 50 (9):1008-1055.
    Consecutive measurements performed on the same quantum system can reveal fundamental insights into quantum theory’s causal structure, and probe different aspects of the quantum measurement problem. According to the Copenhagen interpretation, measurements affect the quantum system in such a way that the quantum superposition collapses after each measurement, erasing any memory of the prior state. We show here that counter to this view, un-amplified measurements have coherent ancilla density matrices that encode the (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  44.  35
    How Reichenbach solved the quantum measurement problem.Thomas Bonk - 2001 - Dialectica 55 (4):291–314.
    Reichenbach's interpretation of quantum mechanics has been narrowly reduced to the advocacy of a three‐valued logic. His interpretation rests, though, on the same rich epistemological framework that shapes his influential analysis of space‐time theories. Different interpretations of the quantum formalism, with their conflicting ontologies and causes, emerge in this view as “equivalent descriptions”. One casualty of the conventionalist approach is the measurement problem. I give reasons for why Reichenbach's view on the nature of interpretations of quantum (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  45.  14
    How Reichenbach solved the quantum measurement problem.Thomas Bonk - 2001 - Dialectica 55 (4):291-314.
    Reichenbach's interpretation of quantum mechanics has been narrowly reduced to the advocacy of a three‐valued logic. His interpretation rests, though, on the same rich epistemological framework that shapes his influential analysis of space‐time theories. Different interpretations of the quantum formalism, with their conflicting ontologies and causes, emerge in this view as “equivalent descriptions”. One casualty of the conventionalist approach is the measurement problem. I give reasons for why Reichenbach's view on the nature of interpretations of quantum (...)
    No categories
    Direct download  
     
    Export citation  
     
    Bookmark  
  46.  41
    Free Quantum Field Theory from Quantum Cellular Automata.Alessandro Bisio, Giacomo Mauro D’Ariano, Paolo Perinotti & Alessandro Tosini - 2015 - Foundations of Physics 45 (10):1137-1152.
    After leading to a new axiomatic derivation of quantum theory, the new informational paradigm is entering the domain of quantum field theory, suggesting a quantum automata framework that can be regarded as an extension of quantum field theory to including an hypothetical Planck scale, and with the usual quantum field theory recovered in the relativistic limit of small wave-vectors. Being derived from simple principles, the automata theory is quantum ab-initio, (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  47. Generalized measure theory.Stanley Gudder - 1973 - Foundations of Physics 3 (3):399-411.
    It is argued that a reformulation of classical measure theory is necessary if the theory is to accurately describe measurements of physical phenomena. The postulates of a generalized measure theory are given and the fundamentals of this theory are developed, and the reader is introduced to some open questions and possible applications. Specifically, generalized measure spaces and integration theory are considered, the partial order structure is studied, and applications to hidden variables and the logic of (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   3 citations  
  48. Measurement and Quantum Dynamics in the Minimal Modal Interpretation of Quantum Theory.Jacob A. Barandes & David Kagan - 2020 - Foundations of Physics 50 (10):1189-1218.
    Any realist interpretation of quantum theory must grapple with the measurement problem and the status of state-vector collapse. In a no-collapse approach, measurement is typically modeled as a dynamical process involving decoherence. We describe how the minimal modal interpretation closes a gap in this dynamical description, leading to a complete and consistent resolution to the measurement problem and an effective form of state collapse. Our interpretation also provides insight into the indivisible nature of measurement—the (...)
    Direct download (7 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  49.  50
    Larc: A State Reduction Theory of Quantum Measurement[REVIEW]Michael Simpson - 2011 - Foundations of Physics 41 (10):1648-1663.
    This proposes a new theory of Quantum measurement; a state reduction theory in which reduction is to the elements of the number operator basis of a system, triggered by the occurrence of annihilation or creation (or lowering or raising) operators in the time evolution of a system. It is from these operator types that the acronym ‘LARC’ is derived. Reduction does not occur immediately after the trigger event; it occurs at some later time with probability P (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  50.  13
    Observing a Quantum Measurement.Jay Lawrence - 2021 - Foundations of Physics 52 (1):1-17.
    With the example of a Stern–Gerlach measurement on a spin-1/2 atom, we show that a superposition of both paths may be observed compatibly with properties attributed to state collapse—for example, the singleness (or mutual exclusivity) of outcomes. This is done by inserting a quantum two-state system (an ancilla) in each path, capable of responding to the passage of the atom, and thus acting as a virtual detector. We then consider real measurements on the compound system of atomic spin (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   1 citation  
1 — 50 / 976