Develops a structuralist understanding of mathematics, as an alternative to set- or type-theoretic foundations, that respects classical mathematical truth while ...
Category theory and topos theory have been seen as providing a structuralist framework for mathematics autonomous vis-a-vis set theory. It is argued here that these theories require a background logic of relations and substantive assumptions addressing mathematical existence of categories themselves. We propose a synthesis of Bell's many-topoi view and modal-structuralism. Surprisingly, a combination of mereology and plural quantification suffices to describe hypothetical large domains, recovering the Grothendieck method of universes. Both topos theory and set theory can be carried out (...) relative to such domains; puzzles about ‘large categories’ and ‘proper classes’ are handled in a uniform way, by relativization, sustaining insights of Zermelo. (shrink)
Three principal varieties of mathematical structuralism are compared: set-theoretic structuralism (‘STS’) using model theory, Shapiro's ante rem structuralism invoking sui generis universals (‘SGS’), and the author's modal-structuralism (‘MS’) invoking logical possibility. Several problems affecting STS are discussed concerning, e.g., multiplicity of universes. SGS overcomes these; but it faces further problems of its own, concerning, e.g., the very intelligibility of purely structural objects and relations. MS, in contrast, overcomes or avoids both sets of problems. Finally, it is argued that the modality (...) of MS or a close cousin appears at crucial junctures in both STS and SGS, so that the above outcome is not obviously tendentious. (shrink)
With the rise of multiple geometries in the nineteenth century, and in the last century the rise of abstract algebra, of the axiomatic method, the set-theoretic foundations of mathematics, and the influential work of the Bourbaki, certain views called “structuralist” have become commonplace. Mathematics is seen as the investigation, by more or less rigorous deductive means, of “abstract structures”, systems of objects fulfilling certain structural relations among themselves and in relation to other systems, without regard to the particular nature of (...) the objects themselves. Geometric spaces need not be made up of spatial or temporal points or other intrinsically geometric objects; as Hilbert famously put it, items of furniture suitably interrelated could satisfy all the relevant axiomatic conditions as far as pure mathematics is concerned. A group, for instance, can be any multiplicity of objects with operations fulfilling the basic requirements of the binary group operation; indeed the very abstractness of the group concept allows for its remarkably wide applicability in pure and applied mathematics. Similar remarks can be made regarding other algebraic structures, and the many spaces of analysis, differential geometry, topology, etc. Of course, mathematicians distinguish between “abstract structures” and “concrete ones”, e.g. made up of familiar, basic items such as real or complex numbers or functions of such, or rationals, or integers, etc. (For example, the space L2 of square-integrable functions from R (or Rn) to C, with inner product (f, g) =. (shrink)
Hellman and Shapiro explore the development of the idea of the continuous, from the Aristotelian view that a true continuum cannot be composed of points to the now standard, entirely punctiform frameworks for analysis and geometry. They then investigate the underlying metaphysical issues concerning the nature of space or space-time.
We develop a point-free construction of the classical one- dimensional continuum, with an interval structure based on mereology and either a weak set theory or logic of plural quantification. In some respects this realizes ideas going back to Aristotle,although, unlike Aristotle, we make free use of classical "actual infinity". Also, in contrast to intuitionistic, Bishop, and smooth infinitesimal analysis, we follow classical analysis in allowing partitioning of our "gunky line" into mutually exclusive and exhaustive disjoint parts, thereby demonstrating the independence (...) of "indecomposability" from a non-punctiform conception. It is surprising that such simple axioms as ours already imply the Archimedean property and that they determine an isomorphism with the Dedekind-Cantor structure of R as a complete, separable, ordered field. We also present some simple topological models of our system, establishing consistency relative to classical analysis. Finally, after describing how to nominalize our theory, we close with comparisons with earlier efforts related to our own. (shrink)
Some remarks on determination, physicalism, model theory, and logical truth.//An attempt to defend physicalism against objections that its bases are indeterminate.
A remarkable development in twentieth-century mathematics is smooth infinitesimal analysis ('SIA'), introducing nilsquare and nilpotent infinitesimals, recovering the bulk of scientifically applicable classical analysis ('CA') without resort to the method of limits. Formally, however, unlike Robinsonian 'nonstandard analysis', SIA conflicts with CA, deriving, e.g., 'not every quantity is either = 0 or not = 0.' Internally, consistency is maintained by using intuitionistic logic (without the law of excluded middle). This paper examines problems of interpretation resulting from this 'change of logic', (...) arguing that standard arguments based on 'smoothness' requirements are question-begging. Instead, it is suggested that recent philosophical work on the logic of vagueness is relevant, especially in the context of a Hilbertian structuralist view of mathematical axioms (as implicitly defining structures of interest). The relevance of both topos models for SIA and modal-structuralism as appled to this theory is clarified, sustaining this remarkable instance of mathematical pluralism. (shrink)
There are a number of regions-based accounts of space/time, due to Whitehead, Roeper, Menger, Tarski, the present authors, and others. They all follow the Aristotelian theme that continua are not composed of points: each region has a proper part. The purpose of this note is to show how to recapture ‘points’ in such frameworks via Scottish neo-logicist abstraction principles. The results recapitulate some Aristotelian themes. A second agenda is to provide a new arena to help decide what is at stake (...) when adjudicating issues concerning the identity of neo-logicist abstracts — so-called ‘Caesar questions’. (shrink)
Standard proofs of generalized Bell theorems, aiming to restrict stochastic, local hidden-variable theories for quantum correlation phenomena, employ as a locality condition the requirement of conditional stochastic independence. The connection between this and the no-superluminary-action requirement of the special theory of relativity has been a topic of controversy. In this paper, we introduce an alternative locality condition for stochastic theories, framed in terms of the models of such a theory (§2). It is a natural generalization of a light-cone determination condition (...) that is essentially equivalent to mathematical conditions that have been used to derive Bell inequalities in the deterministic case. Further, it is roughly equivalent to a condition proposed by Bell that, in one investigation, needed to be supplemented with a much stronger assumption in order to yield an inequality violated by some quantum mechanical predictions. It is shown here that this reflects a very general situation: from the proposed locality condition, even adding the strict anticorrelation condition and the auxiliary hypotheses needed to derive experimentally useful (and theoretically telling) inequalities, no Bell-type inequality is derivable. (These independence claims are the burden of §4.) A certain limitation on the scope of the proposed stochastic locality condition is exposed (§5), but it is found to be rather minor. The conclusion is thus supported that conditional stochastic independence, however reasonable on other grounds, is essentially stronger than what is required by the special theory.Our results stand in apparent contradiction with a class of derivations purporting to obtain generalized Bell inequalities from locality alone. It is shown in Appendix (B) that such proofs do not achieve their goal. This fits with our conclusion that generalized Bell theorems are not straightforward generalizations of theorems restricting deterministic hidden-variable theories, and that, in fact, such generalizations do not exist. This leaves open the possibility that a satisfactory, non-deterministic account of the quantum correlation phenomena can be given within the framework of the special theory. (shrink)
Several leading topics outstanding after John Earman's Bayes or Bust? are investigated further, with emphasis on the relevance of Bayesian explication in epistemology of science, despite certain limitations. (1) Dutch Book arguments are reformulated so that their independence from utility and preference in epistemic contexts is evident. (2) The Bayesian analysis of the Quine-Duhem problem is pursued; the phenomenon of a "protective belt" of auxiliary statements around reasonably successful theories is explicated. (3) The Bayesian approach to understanding the superiority of (...) variety of evidence is pursued; a recent challenge (by Wayne) is converted into a positive result on behalf of the Bayesian analysis, potentially with far-reaching consequences. (4) The condition for applying the merger-of-opinion results and the thesis of underdetermination of theories are compared, revealing significant limitations in applicability of the former. (5) Implications concerning "diachronic Dutch Book" arguments and "non-Bayesian shifts" are drawn, highlighting the incompleteness, but not incorrectness, of Bayesian analysis. (shrink)
A plurality of approaches to foundational aspects of mathematics is a fact of life. Two loci of this are discussed here, the classicism/constructivism controversy over standards of proof, and the plurality of universes of discourse for mathematics arising in set theory and in category theory, whose problematic relationship is discussed. The first case illustrates the hypothesis that a sufficiently rich subject matter may require a multiplicity of approaches. The second case, while in some respects special to mathematics, raises issues of (...) ontological multiplicity and relativity encountered in the natural sciences as well. (shrink)
The present work is a systematic study of five frameworks or perspectives articulating mathematical structuralism, whose core idea is that mathematics is concerned primarily with interrelations in abstraction from the nature of objects. The first two, set-theoretic and category-theoretic, arose within mathematics itself. After exposing a number of problems, the book considers three further perspectives formulated by logicians and philosophers of mathematics: sui generis, treating structures as abstract universals, modal, eliminating structures as objects in favor of freely entertained logical possibilities, (...) and finally, modal-set-theoretic, a sort of synthesis of the set-theoretic and modal perspectives. (shrink)
In previous work, Hellman and Shapiro present a regions-based account of a one-dimensional continuum. This paper produces a more Aristotelian theory, eschewing the existence of points and the use of infinite sets or pluralities. We first show how to modify the original theory. There are a number of theorems that have to be added as axioms. Building on some work by Linnebo, we then show how to take the ‘potential’ nature of the usual operations seriously, by using a modal language, (...) and we show that the two approaches are equivalent. (shrink)
To what extent can constructive mathematics based on intuitionistc logic recover the mathematics needed for spacetime physics? Certain aspects of this important question are examined, both technical and philosophical. On the technical side, order, connectivity, and extremization properties of the continuum are reviewed, and attention is called to certain striking results concerning causal structure in General Relativity Theory, in particular the singularity theorems of Hawking and Penrose. As they stand, these results appear to elude constructivization. On the philosophical side, it (...) is argued that any mentalist-based radical constructivism suffers from a kind of neo-Kantian apriorism. It would be at best a lucky accident if objective spacetime structure mirrored mentalist mathematics. the latter would seem implicitly committed to a Leibnizian relationist view of spacetime, but is it doubtful if implementation of such a view would overcome the objection. As a result, an anti-realist view of physics seems forced on the radical constructivist. (shrink)
In a recent paper, while discussing the role of the notion of analyticity in Carnap’s thought, Howard Stein wrote: “The primitive view–surely that of Kant–was that whatever is trivial is obvious. We know that this is wrong; and I would put it that the nature of mathematical knowledge appears more deeply mysterious today than it ever did in earlier centuries – that one of the advances we have made in philosophy has been to come to an understanding of just ∗I (...) am grateful to audiences at the Steinfest, University of Chicago, May 21-23, 1999, and at the Philosophy of Mathematics Conference at the University of California, Santa Barbara, Feb. 4-6, 2000, and especially to Stewart Shapiro and Tony Anderson, for helpful comments on earlier drafts of this paper. (shrink)
We list, with discussions, various principles of scientific realism, in order to exhibit their diversity and to emphasize certain serious problems of formulation. Ontological and epistemological principles are distinguished. Within the former category, some framed in semantic terms (truth, reference) serve their purpose vis-a-vis instrumentalism (Part 1). They fail, however, to distinguish the realist from a wide variety of (constructional) empiricists. Part 2 seeks purely ontological formulations, so devised that the empiricist cannot reconstruct them from within. The main task here (...) is to characterize "independence of mind". A pair of notions, "physical invariance" and "anti-determination", seem to work. They enable us to assess anew "the problem of constructing the physical out of the phenomenal" (yielding certain clarifications demanded by Goodman). Modern cosmology, especially, is seen to present insuperable obstacles to such empiricist approaches to science. The final section on epistemological principles reveals a morass better avoided in favor of an elementary claim about perception, together with a rejection of any absolute observation/theory dichotomy. Finally, a positive, realist notion of "observable-in-principle" is sketched, and it is suggested that, from the perspective of relativistic cosmology, even this defines no boundary to potential knowledge. (shrink)
Two EPR arguments are reviewed, for their own sake, and for the purpose of clarifying the status of "stochastic" hidden variables. The first is a streamlined version of the EPR argument for the incompleteness of quantum mechanics. The role of an anti-instrumentalist ("realist") interpretation of certain probability statements is emphasized. The second traces out one horn of a central foundational dilemma, the collapse dilemma; complex modal reasoning, similar to the original EPR, is used to derive determinateness (of all spin components (...) of two spin- 1 / 2 particles in the singlet state) from just (a form of) weak locality, result definiteness, and an assumption on propensities based on conservation. Theories meeting these conditions are therefore constrained by the Bell inequalities. Neither controversial assumptions of "strong locality" ("factorability") nor of determinism are employed in the derivation. The categories of "stochastic hidden variables" are then analyzed; one can focus on "quasi-definite" theories, without loss of generality. A means of excluding these is proposed, based on a demand that certain ideal cases be accurately treated. Theorems from quantum measurement theory, sometimes cited as showing that such cases are not physically possible, are found inapplicable. (shrink)
As argued in Hellman (1993), the theorem of Pour-El and Richards (1983) can be seen by the classicist as limiting constructivist efforts to recover the mathematics for quantum mechanics. Although Bridges (1995) may be right that the constructivist would work with a different definition of 'closed operator', this does not affect my point that neither the classical unbounded operators standardly recognized in quantum mechanics nor their restrictions to constructive arguments are recognizable as objects by the constructivist. Constructive substitutes that may (...) still be possible necessarily involve additional 'incompleteness' in the mathematical representation of quantum phenomena. Concerning a second line of reasoning in Hellman (1993), its import is that constructivist practice is consistent with a 'liberal' stance but not with a 'radical', verificationist philosophical position. Whether such a position is actually espoused by certain leading constructivists, they are invited to clarify. (shrink)
This paper explores strengths and limitations of both predicativism and nominalism, especially in connection with the problem of characterizing the continuum. Although the natural number structure can be recovered predicatively (despite appearances), no predicative system can characterize even the full predicative continuum which the classicist can recognize. It is shown, however, that the classical second-order theory of continua (third-order number theory) can be recovered nominalistically, by synthesizing mereology, plural quantification, and a modal-structured approach with essentially just the assumption that an (...) -sequence of concrete atoms be possible. Predicative flexible type theory may then be used to carry out virtually all of scientifically applicable mathematics in a natural way, still without ultimate need of the platonist ontology of classes and relations. (shrink)
First we review highlights of the ongoing debate about foundations of category theory, beginning with Fefermantop-down” approach, where particular categories and functors need not be explicitly defined. Possible reasons for resisting the proposal are offered and countered. The upshot is to sustain a pluralism of foundations along lines actually foreseen by Feferman (1977), something that should be welcomed as a way of resolving this long-standing debate.
Along with Frege, Russell maintained an absolutist stance regarding the subject matter of mathematics, revealed rather than imposed, or proposed, by logical analysis. The Fregean definition of cardinal number, for example, is viewed as (essentially) correct, not merely adequate for mathematics. And Dedekind’s “structuralist” views come in for criticism in the Principles. But, on reflection, Russell also flirted with views very close to a (different) version of structuralism. Main varieties of modern structuralism and their challenges are reviewed, taking account of (...) Russell’s insights. Problems of absolutism plague some versions, and, interestingly, Russell’s critique of Dedekind can be extended to one of them, ante rem structuralism. This leaves modal-structuralism and a category theoretic approach as remaining non-absolutist options. It is suggested that these should be combined. (shrink)
This paper explores the status of the von Neumann-Luders state transition rule (the "projection postulate") within "real-logic" quantum logic. The entire discussion proceeds from a reading of the Luders rule according to which, although idealized in applying only to "minimally disturbing" measurements, it nevertheless makes empirical claims and is not a purely mathematical theorem. An argument (due to Friedman and Putnam) is examined to the effect that QL has an explanatory advantage over Copenhagen and other interpretations which relativize truth-value assignments (...) to experimental arrangements. Two versions of QL, the lattice-theoretic (LT) and partial-Boolean-algebra (PBA), are considered. It turns out that the projection postulate is intimately connected with the choice of conditional connective for QL. The effect of the projection postulate is obtained with the Sasaki conditional. However, this choice is found to require extra assumptions, on both the LT and PBA versions, which are either just as ad hoc as the projection postulate itself or indefensible from within the real-logic QL framework. (shrink)