Results for ' quantum mechanics'

1000+ found
Order:
  1. Quantum Mechanics and Experience.David Z. Albert - 1992 - Harvard Up.
    Presents a guide to the basics of quantum mechanics and measurement.
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   248 citations  
  2. Quantum Mechanics and Experience.[author unknown] - 1994 - Erkenntnis 40 (3):403-406.
    No categories
     
    Export citation  
     
    Bookmark   57 citations  
  3. Quantum Mechanics and Experience.[author unknown] - 1995 - British Journal for the Philosophy of Science 46 (2):253-260.
     
    Export citation  
     
    Bookmark   39 citations  
  4. Quantum Mechanics and 3 N - Dimensional Space.Bradley Monton - 2006 - Philosophy of Science 73 (5):778-789.
    I maintain that quantum mechanics is fundamentally about a system of N particles evolving in three-dimensional space, not the wave function evolving in 3N-dimensional space.
    Direct download (13 more)  
     
    Export citation  
     
    Bookmark   64 citations  
  5. Can Quantum-Mechanical Description of Physical Reality Be Considered Complete?Albert Einstein, Boris Podolsky & Nathan Rosen - 1935 - Physical Review (47):777-780.
  6. Quantum Mechanics in a Time-Asymmetric Universe: On the Nature of the Initial Quantum State.Eddy Keming Chen - 2021 - British Journal for the Philosophy of Science 72 (4):1155–1183.
    In a quantum universe with a strong arrow of time, we postulate a low-entropy boundary condition to account for the temporal asymmetry. In this paper, I show that the Past Hypothesis also contains enough information to simplify the quantum ontology and define a unique initial condition in such a world. First, I introduce Density Matrix Realism, the thesis that the quantum universe is described by a fundamental density matrix that represents something objective. This stands in sharp contrast (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   24 citations  
  7.  60
    Quantum Mechanics Between Ontology and Epistemology.Florian J. Boge - 2018 - Cham: Springer (European Studies in Philosophy of Science).
    This book explores the prospects of rivaling ontological and epistemic interpretations of quantum mechanics (QM). It concludes with a suggestion for how to interpret QM from an epistemological point of view and with a Kantian touch. It thus refines, extends, and combines existing approaches in a similar direction. -/- The author first looks at current, hotly debated ontological interpretations. These include hidden variables-approaches, Bohmian mechanics, collapse interpretations, and the many worlds interpretation. He demonstrates why none of these (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   5 citations  
  8.  72
    Quantum Mechanics: Myths and Facts. [REVIEW]Hrvoje Nikolić - 2007 - Foundations of Physics 37 (11):1563-1611.
    A common understanding of quantum mechanics (QM) among students and practical users is often plagued by a number of “myths”, that is, widely accepted claims on which there is not really a general consensus among experts in foundations of QM. These myths include wave-particle duality, time-energy uncertainty relation, fundamental randomness, the absence of measurement-independent reality, locality of QM, nonlocality of QM, the existence of well-defined relativistic QM, the claims that quantum field theory (QFT) solves the problems of (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   13 citations  
  9.  98
    Time, quantum mechanics, and tense.Simon Saunders - 1996 - Synthese 107 (1):19 - 53.
    The relational approach to tense holds that the now, passage, and becoming are to be understood in terms of relations between events. The debate over the adequacy of this framework is illustrated by a comparative study of the sense in which physical theories, (in)deterministic and (non)relativistic, can lend expression to the metaphysics at issue. The objective is not to settle the matter, but to clarify the nature of this metaphysics and to establish that the same issues are at stake in (...)
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark   25 citations  
  10.  40
    Quantum mechanics, time, and theology: Indefinite causal order and a new approach to salvation.Emily Qureshi-Hurst & Anna Pearson - 2020 - Zygon 55 (3):663-684.
    Quantum mechanics has recently indicated that, at the fundamental level, temporal order is not fixed. This phenomenon, termed Indefinite Causal Order, is yet to receive metaphysical or theological engagement. We examine Indefinite Causal Order, particularly as it emerges in a 2018 photonic experiment. In this experiment, two operations A and B were shown to be in a superposition with regard to their causal order. Essentially, time, intuitively understood as fixed, flowing, and fundamental, becomes fuzzy. We argue that if (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  11. Quantum mechanics and Priority Monism.Claudio Calosi - 2014 - Synthese 191 (5):915-928.
    The paper address the question of whether quantum mechanics (QM) favors Priority Monism, the view according to which the Universe is the only fundamental object. It develops formal frameworks to frame rigorously the question of fundamental mereology and its answers, namely (Priority) Pluralism and Monism. It then reconstructs the quantum mechanical argument in favor of the latter and provides a detailed and thorough criticism of it that sheds furthermore new light on the relation between parthood, composition and (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   20 citations  
  12. Quantum mechanics is about quantum information.Jeffrey Bub - 2005 - Foundations of Physics 35 (4):541-560.
    I argue that quantum mechanics is fundamentally a theory about the representation and manipulation of information, not a theory about the mechanics of nonclassical waves or particles. The notion of quantum information is to be understood as a new physical primitive—just as, following Einstein’s special theory of relativity, a field is no longer regarded as the physical manifestation of vibrations in a mechanical medium, but recognized as a new physical primitive in its own right.
    Direct download (8 more)  
     
    Export citation  
     
    Bookmark   38 citations  
  13. How Quantum Mechanics Can Consistently Describe the Use of Itself.Dustin Lazarovici & Mario Hubert - 2019 - Scientific Reports 470 (9):1-8.
    We discuss the no-go theorem of Frauchiger and Renner based on an "extended Wigner's friend" thought experiment which is supposed to show that any single-world interpretation of quantum mechanics leads to inconsistent predictions if it is applicable on all scales. We show that no such inconsistency occurs if one considers a complete description of the physical situation. We then discuss implications of the thought experiment that have not been clearly addressed in the original paper, including a tension between (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   3 citations  
  14. Relational quantum mechanics and the determinacy problem.Matthew J. Brown - 2009 - British Journal for the Philosophy of Science 60 (4):679-695.
    Carlo Rovelli's relational interpretation of quantum mechanics holds that a system's states or the values of its physical quantities as normally conceived only exist relative to a cut between a system and an observer or measuring instrument. Furthermore, on Rovelli's account, the appearance of determinate observations from pure quantum superpositions happens only relative to the interaction of the system and observer. Jeffrey Barrett ([1999]) has pointed out that certain relational interpretations suffer from what we might call the (...)
    Direct download (15 more)  
     
    Export citation  
     
    Bookmark   19 citations  
  15.  7
    The Quantum Mechanics of Minds and Worlds.Jeffrey A. Barrett - 1999 - Oxford University Press UK.
    Jeffrey Barrett presents the most comprehensive study yet of a problem that has puzzled physicists and philosophers since the 1930s. Quantum mechanics is in one sense the most successful physical theory ever, accurately predicting the behaviour of the basic constituents of matter. But it has an apparent ambiguity or inconsistency at its heart; Barrett gives a careful, clear, and challenging evaluation of attempts to deal with this problem.
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   12 citations  
  16.  63
    Quantum mechanics over sets: a pedagogical model with non-commutative finite probability theory as its quantum probability calculus.David Ellerman - 2017 - Synthese (12):4863-4896.
    This paper shows how the classical finite probability theory (with equiprobable outcomes) can be reinterpreted and recast as the quantum probability calculus of a pedagogical or toy model of quantum mechanics over sets (QM/sets). There have been several previous attempts to develop a quantum-like model with the base field of ℂ replaced by ℤ₂. Since there are no inner products on vector spaces over finite fields, the problem is to define the Dirac brackets and the probability (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   6 citations  
  17.  4
    The Quantum Mechanics of Minds and Worlds.Jeffrey A. Barrett - 1999 - Oxford University Press UK.
    Jeffrey Barrett presents the most comprehensive study yet of a problem that has puzzled physicists and philosophers since the 1930s. The standard theory of quantum mechanics is in one sense the most successful physical theory ever, predicting the behaviour of the basic constituents of all physical things; no other theory has ever made such accurate empirical predictions. However, if one tries to understand the theory as providing a complete and accurate framework for the description of the behaviour of (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   10 citations  
  18. Time, quantum mechanics, and probability.Simon Saunders - 1998 - Synthese 114 (3):373-404.
    A variety of ideas arising in decoherence theory, and in the ongoing debate over Everett's relative-state theory, can be linked to issues in relativity theory and the philosophy of time, specifically the relational theory of tense and of identity over time. These have been systematically presented in companion papers (Saunders 1995; 1996a); in what follows we shall consider the same circle of ideas, but specifically in relation to the interpretation of probability, and its identification with relations in the Hilbert Space (...)
    Direct download (11 more)  
     
    Export citation  
     
    Bookmark   85 citations  
  19.  80
    Relational quantum mechanics.Federico Laudisa - 2008 - Stanford Encyclopedia of Philosophy.
    Relational quantum mechanics is an interpretation of quantum theory which discards the notions of absolute state of a system, absolute value of its physical quantities, or absolute event. The theory describes only the way systems affect each other in the course of physical interactions. State and physical quantities refer always to the interaction, or the relation, between two systems. Nevertheless, the theory is assumed to be complete. The physical content of quantum theory is understood as expressing (...)
    Direct download  
     
    Export citation  
     
    Bookmark   45 citations  
  20.  45
    Relativity, Quantum Mechanics and EPR.Robert Clifton, Constantine Pagonis & Itamar Pitowsky - 1992 - PSA: Proceedings of the Biennial Meeting of the Philosophy of Science Association 1992 (Volume One: Contributed Papers):114 - 128.
    The Einstein-Podolsky-Rosen argument for the incompleteness of quantum mechanics involves two assumptions: one about locality and the other about when it is legitimate to infer the existence of an element-of-reality. Using one simple thought experiment, we argue that quantum predictions and the relativity of simultaneity require that both these assumptions fail, whether or not quantum mechanics is complete.
    Direct download  
     
    Export citation  
     
    Bookmark   12 citations  
  21. If Quantum Mechanics Is the Solution, What Should the Problem Be?Vasil Penchev - 2020 - Philosophy of Science eJournal (Elsevier: SSRN) 13 (32):1-10.
    The paper addresses the problem, which quantum mechanics resolves in fact. Its viewpoint suggests that the crucial link of time and its course is omitted in understanding the problem. The common interpretation underlain by the history of quantum mechanics sees discreteness only on the Plank scale, which is transformed into continuity and even smoothness on the macroscopic scale. That approach is fraught with a series of seeming paradoxes. It suggests that the present mathematical formalism of (...) mechanics is only partly relevant to its problem, which is ostensibly known. The paper accepts just the opposite: The mathematical solution is absolute relevant and serves as an axiomatic base, from which the real and yet hidden problem is deduced. Wave-particle duality, Hilbert space, both probabilistic and many-worlds interpretations of quantum mechanics, quantum information, and the Schrödinger equation are included in that base. The Schrödinger equation is understood as a generalization of the law of energy conservation to past, present, and future moments of time. The deduced real problem of quantum mechanics is: “What is the universal law describing the course of time in any physical change therefore including any mechanical motion?”. (shrink)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  22. Quantum mechanics, orthogonality, and counting.Peter J. Lewis - 1997 - British Journal for the Philosophy of Science 48 (3):313-328.
    In quantum mechanics it is usually assumed that mutually exclusives states of affairs must be represented by orthogonal vectors. Recent attempts to solve the measurement problem, most notably the GRW theory, require the relaxation of this assumption. It is shown that a consequence of relaxing this assumption is that arithmatic does not apply to ordinary macroscopic objects. It is argued that such a radical move is unwarranted given the current state of understanding of the foundations of quantum (...)
    Direct download (10 more)  
     
    Export citation  
     
    Bookmark   32 citations  
  23. A quantum mechanical model of consciousness and the emergence of?I?Danah Zohar - 1995 - Minds and Machines 5 (4):597-607.
    There have been suggestions that the unity of consciousness may be related to the kind of holism depicted only in quantum physics. This argument will be clarified and strengthened. It requires the brain to contain a quantum system with the right properties — a Bose-Einstein condensate. It probably does contain one such system, as both theory and experiment have indicated. In fact, we cannot pay full attention to a quantum whole and its parts simultaneously, though we may (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  24.  60
    Quantum Mechanics in a New Light.Ulrich Mohrhoff - 2017 - Foundations of Science 22 (3):517-537.
    Although the present paper looks upon the formal apparatus of quantum mechanics as a calculus of correlations, it goes beyond a purely operationalist interpretation. Having established the consistency of the correlations with the existence of their correlata, and having justified the distinction between a domain in which outcome-indicating events occur and a domain whose properties only exist if their existence is indicated by such events, it explains the difference between the two domains as essentially the difference between the (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   3 citations  
  25. Quantum Mechanics over sets.David Ellerman - forthcoming - Synthese.
    This paper shows how the classical finite probability theory (with equiprobable outcomes) can be reinterpreted and recast as the quantum probability calculus of a pedagogical or toy model of quantum mechanics over sets (QM/sets). There have been several previous attempts to develop a quantum-like model with the base field of ℂ replaced by ℤ₂. Since there are no inner products on vector spaces over finite fields, the problem is to define the Dirac brackets and the probability (...)
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark   4 citations  
  26.  7
    Relational Quantum Mechanics is About Facts, Not States: A Reply to Pienaar and Brukner.Andrea Di Biagio & Carlo Rovelli - 2022 - Foundations of Physics 52 (3):1-21.
    In recent works, Časlav Brukner and Jacques Pienaar have raised interesting objections to the relational interpretation of quantum mechanics. We answer these objections in detail and show that, far from questioning the viability of the interpretation, they sharpen and clarify it.
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark   5 citations  
  27. Quantum mechanics as a consistency condition on initial and final boundary conditions.David John Miller - 2008 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 39 (4):767-781.
    If the block universe view is correct, the future and the past have similar status and one would expect physical theories to involve final as well as initial boundary conditions. A plausible consistency condition between the initial and final boundary conditions in non-relativistic quantum mechanics leads to the idea that the properties of macroscopic quantum systems, relevantly measuring instruments, are uniquely determined by the boundary conditions. An important element in reaching that conclusion is that preparations and measurements (...)
    Direct download (9 more)  
     
    Export citation  
     
    Bookmark   4 citations  
  28.  42
    Quantum Mechanics and the Principle of Maximal Variety.Lee Smolin - 2016 - Foundations of Physics 46 (6):736-758.
    Quantum mechanics is derived from the principle that the universe contain as much variety as possible, in the sense of maximizing the distinctiveness of each subsystem. The quantum state of a microscopic system is defined to correspond to an ensemble of subsystems of the universe with identical constituents and similar preparations and environments. A new kind of interaction is posited amongst such similar subsystems which acts to increase their distinctiveness, by extremizing the variety. In the limit of (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   5 citations  
  29.  62
    Quantum Mechanics Emerges from Information Theory Applied to Causal Horizons.Jae-Weon Lee - 2011 - Foundations of Physics 41 (4):744-753.
    It is suggested that quantum mechanics is not fundamental but emerges from classical information theory applied to causal horizons. The path integral quantization and quantum randomness can be derived by considering information loss of fields or particles crossing Rindler horizons for accelerating observers. This implies that information is one of the fundamental roots of all physical phenomena. The connection between this theory and Verlinde’s entropic gravity theory is also investigated.
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark   3 citations  
  30. Everettian quantum mechanics without branching time.Alastair Wilson - 2012 - Synthese 188 (1):67-84.
    In this paper I assess the prospects for combining contemporary Everettian quantum mechanics (EQM) with branching-time semantics in the tradition of Kripke, Prior, Thomason and Belnap. I begin by outlining the salient features of ‘decoherence-based’ EQM, and of the ‘consistent histories’ formalism that is particularly apt for conceptual discussions in EQM. This formalism permits of both ‘branching worlds’ and ‘parallel worlds’ interpretations; the metaphysics of EQM is in this sense underdetermined by the physics. A prominent argument due to (...)
    Direct download (6 more)  
     
    Export citation  
     
    Bookmark   14 citations  
  31. Quantum Mechanics and Metaphysical Indeterminacy.George Darby - 2010 - Australasian Journal of Philosophy 88 (2):227-245.
    There has been recent interest in formulating theories of non-representational indeterminacy. The aim of this paper is to clarify the relevance of quantum mechanics to this project. Quantum-mechanical examples of vague objects have been offered by various authors, displaying indeterminate identity, in the face of the famous Evans argument that such an idea is incoherent. It has also been suggested that the quantum-mechanical treatment of state-dependent properties exhibits metaphysical indeterminacy. In both cases it is important to (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   32 citations  
  32.  47
    Quantum Mechanics as an Emergent Property of Ergodic Systems Embedded in the Zero-point Radiation Field.L. de la Peña, A. Valdés-Hernández & A. M. Cetto - 2009 - Foundations of Physics 39 (11):1240-1272.
    The present paper reveals (non-relativistic) quantum mechanics as an emergent property of otherwise classical ergodic systems embedded in a stochastic vacuum or zero-point radiation field (zpf). This result provides a theoretical basis for understanding recent numerical experiments in which a statistical analysis of an atomic electron interacting with the zpf furnishes the quantum distribution for the ground state of the H atom. The action of the zpf on matter is essential within the present approach, but it is (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   9 citations  
  33.  96
    A Quantum Mechanical Supertask.John D. Norton - 1999 - Foundations of Physics 29 (8):1265-1302.
    That quantum mechanical measurement processes are indeterministic is widely known. The time evolution governed by the differential Schrödinger equation can also be indeterministic under the extreme conditions of a quantum supertask, the quantum analogue of a classical supertask. Determinism can be restored by requiring normalizability of the supertask state vector, but it must be imposed as an additional constraint on the differential Schrödinger equation.
    Direct download (7 more)  
     
    Export citation  
     
    Bookmark   23 citations  
  34. Quantum Mechanics on Spacetime I: Spacetime State Realism.David Wallace & Christopher Gordon Timpson - 2010 - British Journal for the Philosophy of Science 61 (4):697-727.
    What ontology does realism about the quantum state suggest? The main extant view in contemporary philosophy of physics is wave-function realism . We elaborate the sense in which wave-function realism does provide an ontological picture, and defend it from certain objections that have been raised against it. However, there are good reasons to be dissatisfied with wave-function realism, as we go on to elaborate. This motivates the development of an opposing picture: what we call spacetime state realism , a (...)
    Direct download (14 more)  
     
    Export citation  
     
    Bookmark   99 citations  
  35. Quantum mechanics in terms of realism.Arthur Jabs - 2017 - arXiv.Org.
    We expound an alternative to the Copenhagen interpretation of the formalism of nonrelativistic quantum mechanics. The basic difference is that the new interpretation is formulated in the language of epistemological realism. It involves a change in some basic physical concepts. The ψ function is no longer interpreted as a probability amplitude of the observed behaviour of elementary particles but as an objective physical field representing the particles themselves. The particles are thus extended objects whose extension varies in time (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   6 citations  
  36.  89
    A quantum-mechanical automation.David Z. Albert - 1987 - Philosophy of Science 54 (4):577-585.
    A Quantum-Mechanical automation, equipped with mechanisms for the measurement and the recording and the prediction of certain physical properties of the world, is described. It is inquired what sort of empirical description such an automation would produce of itself. It turns out that this description would be a very novel one, one such as was never imagined in the conventional discussions of measurement.
    Direct download (8 more)  
     
    Export citation  
     
    Bookmark   9 citations  
  37. Quantum mechanics.Jenann Ismael - 2008 - Stanford Encyclopedia of Philosophy.
    Quantum mechanics is, at least at first glance and at least in part, a mathematical machine for predicting the behaviors of microscopic particles — or, at least, of the measuring instruments we use to explore those behaviors — and in that capacity, it is spectacularly successful: in terms of power and precision, head and shoulders above any theory we have ever had. Mathematically, the theory is well understood; we know what its parts are, how they are put together, (...)
    Direct download  
     
    Export citation  
     
    Bookmark   17 citations  
  38. Quantum mechanics, strong emergence and ontological non-reducibility.Rodolfo Gambini, Lucía Lewowicz & Jorge Pullin - 2015 - Foundations of Chemistry 17 (2):117-127.
    We show that a new interpretation of quantum mechanics, in which the notion of event is defined without reference to measurement or observers, allows to construct a quantum general ontology based on systems, states and events. Unlike the Copenhagen interpretation, it does not resort to elements of a classical ontology. The quantum ontology in turn allows us to recognize that a typical behavior of quantum systems exhibits strong emergence and ontological non-reducibility. Such phenomena are not (...)
    Direct download (8 more)  
     
    Export citation  
     
    Bookmark   4 citations  
  39.  83
    Sensible quantum mechanics: Are probabilities only in the mind?Don N. Page - 1996 - International Journal of Modern Physics D 5:583-96.
    Quantum mechanics may be formulated as Sensible Quantum Mechanics (SQM) so that it contains nothing probabilistic except conscious perceptions. Sets of these perceptions can be deterministically realized with measures given by expectation values of positive-operator-valued awareness operators. Ratios of the measures for these sets of perceptions can be interpreted as frequency- type probabilities for many actually existing sets. These probabilities gener- ally cannot be given by the ordinary quantum “probabilities” for a single set of alternatives. (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   17 citations  
  40.  81
    Quantum Mechanics: An Empiricist View.Bas C. Van Fraassen - 1991 - Oxford, England: Oxford University Press.
    After introducing the empiricist point of view in philosophy of science, and the concepts and methods of the semantic approach to scientific theories, van Fraassen discusses quantum theory in three stages. He first examines the question of whether and how empirical phenomena require a non-classical theory, and what sort of theory they require. He then discusses the mathematical foundations of quantum theory with special reference to developments in the modelling of interaction, composite systems, and measurement. Finally, the author (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   51 citations  
  41.  73
    Everettian quantum mechanics and physical probability: Against the principle of “State Supervenience”.Lina Jansson - 2016 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 53:45-53.
    Everettian quantum mechanics faces the challenge of how to make sense of probability and probabilistic reasoning in a setting where there is typically no unique outcome of measurements. Wallace has built on a proof by Deutsch to argue that a notion of probability can be recovered in the many worlds setting. In particular, Wallace argues that a rational agent has to assign probabilities in accordance with the Born rule. This argument relies on a rationality constraint that Wallace calls (...)
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark   6 citations  
  42.  2
    Quantum Mechanics and Objectivity a Study of the Physical Philosophy of Werner Heisenberg.Patrick A. Heelan - 1965 - M. Nijhoff.
    Quantum mechanics has raised in an acute form three problems which go to the heart of man's relationship with nature through experimental science: the public objectivity of science, that is, its value as a universal science for all investigators; the empirical objectivity of scientific objects, that is, man's ability to construct a precise or causal spatio-temporal model of microscopic systems; and finally, the formal objectivity of science, that is, its value as an expression of what nature is independently (...)
    No categories
    Direct download  
     
    Export citation  
     
    Bookmark   15 citations  
  43. Ensemble Interpretations of Quantum Mechanics a Modern Perspective.D. Home & M. A. B. Whitaker - 1992 - North-Holland.
  44. Quantum Mechanics: Historical Contingency and the Copenhagen Hegemony.James T. Cushing - 1994 - University of Chicago Press.
    No categories
     
    Export citation  
     
    Bookmark   116 citations  
  45.  13
    Relational Quantum Mechanics and the PBR Theorem: A Peaceful Coexistence.Andrea Oldofredi & Caludio Calosi - 2021 - Foundations of Physics 51 (4):1-21.
    According to Relational Quantum Mechanics the wave function \ is considered neither a concrete physical item evolving in spacetime, nor an object representing the absolute state of a certain quantum system. In this interpretative framework, \ is defined as a computational device encoding observers’ information; hence, RQM offers a somewhat epistemic view of the wave function. This perspective seems to be at odds with the PBR theorem, a formal result excluding that wave functions represent knowledge of an (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  46. Relational quantum mechanics.Carlo Rovelli - 1996 - International Journal of Theoretical Physics 35 (8):1637--1678.
  47. Quantum mechanical theories of consciousness.Henry P. Stapp - 2007 - In Max Velmans & Susan Schneider (eds.), The Blackwell Companion to Consciousness. Blackwell. pp. 300--312.
    Quantum mechanical theories of consciousness are contrasted to classical ones. A key difference is that the quantum laws are fundamentally psychophysical and provide an explanation of the causal effect of conscious effort on neural processes, while the laws of classical physics, being purely physical, cannot. The quantum approach provides causal explanations, deduced from the laws of physics, of correlations found in psychology and in neuropsychology.
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark   7 citations  
  48. Quantum Mechanics and the Philosophy of Alfred North Whitehead.Michael Epperson - 2004 - Fordham University Press.
    In Process and Reality and other works, Alfred North Whitehead struggled to come to terms with the impact the new science of quantum mechanics would have on metaphysics.This ambitious book is the first extended analysis of the intricate relationships between relativity theory, quantum mechanics, and Whitehead's cosmology. Michael Epperson illuminates the intersection of science and philosophy in Whitehead's work-and details Whitehead's attempts to fashion an ontology coherent with quantum anomalies.Including a nonspecialist introduction to quantum (...)
    Direct download  
     
    Export citation  
     
    Bookmark   16 citations  
  49.  65
    Quantum Mechanics as Classical Physics.Charles T. Sebens - 2015 - Philosophy of Science 82 (2):266-291.
    Here I explore a novel no-collapse interpretation of quantum mechanics that combines aspects of two familiar and well-developed alternatives, Bohmian mechanics and the many-worlds interpretation. Despite reproducing the empirical predictions of quantum mechanics, the theory looks surprisingly classical. All there is at the fundamental level are particles interacting via Newtonian forces. There is no wave function. However, there are many worlds.
    Direct download (10 more)  
     
    Export citation  
     
    Bookmark   15 citations  
  50. Quantum Mechanics and Paradigm Shifts.Valia Allori - 2015 - Topoi 34 (2):313-323.
    It has been argued that the transition from classical to quantum mechanics is an example of a Kuhnian scientific revolution, in which there is a shift from the simple, intuitive, straightforward classical paradigm, to the quantum, convoluted, counterintuitive, amazing new quantum paradigm. In this paper, after having clarified what these quantum paradigms are supposed to be, I analyze whether they constitute a radical departure from the classical paradigm. Contrary to what is commonly maintained, I argue (...)
    Direct download (9 more)  
     
    Export citation  
     
    Bookmark   4 citations  
1 — 50 / 1000