Results for 'wave-function'

1000+ found
Order:
  1.  50
    The Wave Function as a True Ensemble.Jonte Hance & Sabine Hossenfelder - 2022 - Proceedings of the Royal Society 478 (2262).
    In quantum mechanics, the wavefunction predicts probabilities of possible measurement outcomes, but not which individual outcome is realised in each run of an experiment. This suggests that it describes an ensemble of states with different values of a hidden variable. Here, we analyse this idea with reference to currently known theorems and experiments. We argue that the ψ-ontic/epistemic distinction fails to properly identify ensemble interpretations and propose a more useful definition. We then show that all local ψ-ensemble interpretations which reproduce (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  2.  20
    The World in the Wave Function: A Metaphysics for Quantum Physics.Alyssa Ney - 2021 - New York, NY, USA: Oxford University Press.
  3. The Wave-Function as a Multi-Field.Mario Hubert & Davide Romano - 2018 - European Journal for Philosophy of Science 8 (3):521-537.
    It is generally argued that if the wave-function in the de Broglie–Bohm theory is a physical field, it must be a field in configuration space. Nevertheless, it is possible to interpret the wave-function as a multi-field in three-dimensional space. This approach hasn’t received the attention yet it really deserves. The aim of this paper is threefold: first, we show that the wave-function is naturally and straightforwardly construed as a multi-field; second, we show why this (...)
    Direct download (10 more)  
     
    Export citation  
     
    Bookmark   24 citations  
  4. The Wave Function: Essays in the Metaphysics of Quantum Mechanics.Alyssa Ney & David Albert (eds.) - 2013 - Oxford University Press.
    This is a new volume of original essays on the metaphysics of quantum mechanics. The essays address questions such as: What fundamental metaphysics is best motivated by quantum mechanics? What is the ontological status of the wave function? What is the nature of the fundamental space (or space-time manifold) of quantum mechanics?
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   88 citations  
  5.  18
    The Wave Function: Essays on the Metaphysics of Quantum Mechanics.Alyssa Ney & David Albert (eds.) - 2013 - Oxford University Press USA.
    This is a new volume of original essays on the metaphysics of quantum mechanics. The essays address questions such as: What fundamental metaphysics is best motivated by quantum mechanics? What is the ontological status of the wave function? Does quantum mechanics support the existence of any other fundamental entities, e.g. particles? What is the nature of the fundamental space of quantum mechanics? What is the relationship between the fundamental ontology of quantum mechanics and ordinary, macroscopic objects like tables, (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   67 citations  
  6. Wave Function Ontology.Bradley Monton - 2002 - Synthese 130 (2):265-277.
    I argue that the wave function ontology for quantum mechanics is an undesirable ontology. This ontology holds that the fundamental space in which entities evolve is not three-dimensional, but instead 3N-dimensional, where N is the number of particles standardly thought to exist in three-dimensional space. I show that the state of three-dimensional objects does not supervene on the state of objects in 3N-dimensional space. I also show that the only way to guarantee the existence of the appropriate mental (...)
    Direct download (7 more)  
     
    Export citation  
     
    Bookmark   57 citations  
  7.  3
    Collapse of the Wave Function: Models, Ontology, Origin, and Implications.Shan Gao (ed.) - 2018 - Cambridge University Press.
    An overview of the collapse theories of quantum mechanics. Written by distinguished physicists and philosophers of physics, it discusses the origin and implications of wave-function collapse, the controversies around collapse models and their ontologies, and new arguments for the reality of wave function collapse.
    No categories
    Direct download  
     
    Export citation  
     
    Bookmark   1 citation  
  8. Realism About the Wave Function.Eddy Keming Chen - 2019 - Philosophy Compass 14 (7).
    A century after the discovery of quantum mechanics, the meaning of quantum mechanics still remains elusive. This is largely due to the puzzling nature of the wave function, the central object in quantum mechanics. If we are realists about quantum mechanics, how should we understand the wave function? What does it represent? What is its physical meaning? Answering these questions would improve our understanding of what it means to be a realist about quantum mechanics. In this (...)
    Direct download (6 more)  
     
    Export citation  
     
    Bookmark   30 citations  
  9. Bohmian Mechanics Without Wave Function Ontology.Albert Solé - 2013 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 44 (4):365-378.
    In this paper, I critically assess different interpretations of Bohmian mechanics that are not committed to an ontology based on the wave function being an actual physical object that inhabits configuration space. More specifically, my aim is to explore the connection between the denial of configuration space realism and another interpretive debate that is specific to Bohmian mechanics: the quantum potential versus guidance approaches. Whereas defenders of the quantum potential approach to the theory claim that Bohmian mechanics is (...)
    Direct download (6 more)  
     
    Export citation  
     
    Bookmark   18 citations  
  10.  27
    Review of Alyssa Ney’s The World in the Wave Function: A Metaphysics for Quantum Physics[REVIEW]Mario Hubert - 2022 - Philosophy of Science.
    There is not much of a consensus on almost anything about quantum mechanics. I take it, however, that the minimum consensus is that "although quantum mechanics is empirically successful, quantum mechanics is hard to understand." Quantum mechanics, in the way it is presented in most textbooks, does indeed not provide a clear picture of reality that would make it a theory to be understood. In her new book, "The World in the Wave Function: A Metaphysics for Quantum Physics," (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  11. Scientific Realism Without the Wave-Function: An Example of Naturalized Quantum Metaphysics.Valia Allori - 2020 - In Juha Saatsi & Steven French (eds.), Scientific Realism and the Quantum. Oxford University Press.
    Scientific realism is the view that our best scientific theories can be regarded as (approximately) true. This is connected with the view that science, physics in particular, and metaphysics could (and should) inform one another: on the one hand, science tells us what the world is like, and on the other hand, metaphysical principles allow us to select between the various possible theories which are underdetermined by the data. Nonetheless, quantum mechanics has always been regarded as, at best, puzzling, if (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   3 citations  
  12. Ontological Reduction and the Wave Function Ontology.Alyssa Ney - 2013 - In Alyssa Ney & David Z. Albert (eds.), The Wave Function: Essays on the Metaphysics of Quantum Mechanics. Oxford University Press. pp. 168-183.
  13.  68
    The Meaning of the Wave Function: In Search of the Ontology of Quantum Mechanics.Shan Gao - unknown
    The meaning of the wave function has been a hot topic of debate since the early days of quantum mechanics. Recent years have witnessed a growing interest in this long-standing question. Is the wave function ontic, directly representing a state of reality, or epistemic, merely representing a state of knowledge, or something else? If the wave function is not ontic, then what, if any, is the underlying state of reality? If the wave (...) is indeed ontic, then exactly what physical state does it represent? In this book, I aim to make sense of the wave function in quantum mechanics and find the ontological content of the theory. The book can be divided into three parts. The first part addresses the question of the nature of the wave function. After giving a comprehensive and critical review of the competing views of the wave function, I present a new argument for the ontic view in terms of protective measurements. In addition, I also analyze the origin of the wave function by deriving the free Schroedinger equation. The second part analyzes the ontological meaning of the wave function. I propose a new ontological interpretation of the wave function in terms of random discontinuous motion of particles, and give two main arguments supporting this interpretation. The third part investigates whether the suggested quantum ontology is complete in accounting for our definite experience and whether it needs to be revised in the relativistic domain. (shrink)
    No categories
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   20 citations  
  14. The Wave Function and Its Evolution.Shan Gao - 2011
    The meaning of the wave function and its evolution are investigated. First, we argue that the wave function in quantum mechanics is a description of random discontinuous motion of particles, and the modulus square of the wave function gives the probability density of the particles being in certain locations in space. Next, we show that the linear non-relativistic evolution of the wave function of an isolated system obeys the free Schrödinger equation due (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  15. The Wave Function and Particle Ontology.Shan Gao - 2014
    In quantum mechanics, the wave function of a N-body system is a mathematical function defined in a 3N-dimensional configuration space. We argue that wave function realism implies particle ontology when assuming: (1) the wave function of a N-body system describes N physical entities; (2) each triple of the 3N coordinates of a point in configuration space that relates to one physical entity represents a point in ordinary three-dimensional space. Moreover, the motion of particles (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  16. Finding the world in the wave function: some strategies for solving the macro-object problem.Alyssa Ney - 2020 - Synthese 197 (10):4227-4249.
    Realists wanting to capture the facts of quantum entanglement in a metaphysical interpretation find themselves faced with several options: to grant some species of fundamental nonseparability, adopt holism, or to view localized spacetime systems as ultimately reducible to a higher-dimensional entity, the quantum state or wave function. Those adopting the latter approach and hoping to view the macroscopic world as grounded in the quantum wave function face the macro-object problem. The challenge is to articulate the metaphysical (...)
    Direct download (4 more)  
    Translate
     
     
    Export citation  
     
    Bookmark   18 citations  
  17. Meaning of the Wave Function.Shan Gao - 2010
    We investigate the meaning of the wave function by analyzing the mass and charge density distributions of a quantum system. According to protective measurement, a charged quantum system has effective mass and charge density distributing in space, proportional to the square of the absolute value of its wave function. In a realistic interpretation, the wave function of a quantum system can be taken as a description of either a physical field or the ergodic motion (...)
    Direct download (6 more)  
     
    Export citation  
     
    Bookmark   7 citations  
  18.  53
    Can the Wave Function in Configuration Space Be Replaced by Single-Particle Wave Functions in Physical Space?Travis Norsen, Damiano Marian & Xavier Oriols - 2015 - Synthese 192 (10):3125-3151.
    The ontology of Bohmian mechanics includes both the universal wave function and particles. Proposals for understanding the physical significance of the wave function in this theory have included the idea of regarding it as a physically-real field in its 3N-dimensional space, as well as the idea of regarding it as a law of nature. Here we introduce and explore a third possibility in which the configuration space wave function is simply eliminated—replaced by a set (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   8 citations  
  19. ​​Our Fundamental Physical Space: An Essay on the Metaphysics of the Wave Function.Eddy Keming Chen - 2017 - Journal of Philosophy 114 (7):333-365.
    The mathematical structure of realist quantum theories has given rise to a debate about how our ordinary 3-dimensional space is related to the 3N-dimensional configuration space on which the wave function is defined. Which of the two spaces is our (more) fundamental physical space? I review the debate between 3N-Fundamentalists and 3D-Fundamentalists and evaluate it based on three criteria. I argue that when we consider which view leads to a deeper understanding of the physical world, especially given the (...)
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark   32 citations  
  20.  58
    Niels Bohr on the Wave Function and the Classical/Quantum Divide.Henrik Zinkernagel - 2016 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 53:9-19.
    It is well known that Niels Bohr insisted on the necessity of classical concepts in the account of quantum phenomena. But there is little consensus concerning his reasons, and what he exactly meant by this. In this paper, I re-examine Bohr’s interpretation of quantum mechanics, and argue that the necessity of the classical can be seen as part of his response to the measurement problem. More generally, I attempt to clarify Bohr’s view on the classical/quantum divide, arguing that the relation (...)
    Direct download (8 more)  
     
    Export citation  
     
    Bookmark   14 citations  
  21. Fundamental Physical Ontologies and the Constraint of Empirical Coherence: A Defense of Wave Function Realism.Alyssa Ney - 2015 - Synthese 192 (10):3105-3124.
    This paper defends wave function realism against the charge that the view is empirically incoherent because our evidence for quantum theory involves facts about objects in three-dimensional space or space-time . It also criticizes previous attempts to defend wave function realism against this charge by claiming that the wave function is capable of grounding local beables as elements of a derivative ontology.
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   31 citations  
  22. Consciousness and the Collapse of the Wave Function.David J. Chalmers & Kelvin J. McQueen - forthcoming - In Shan Gao (ed.), Consciousness and Quantum Mechanics. Oxford University Press.
    Does consciousness collapse the quantum wave function? This idea was taken seriously by John von Neumann and Eugene Wigner but is now widely dismissed. We develop the idea by combining a mathematical theory of consciousness (integrated information theory) with an account of quantum collapse dynamics (continuous spontaneous localization). Simple versions of the theory are falsified by the quantum Zeno effect, but more complex versions remain compatible with empirical evidence. In principle, versions of the theory can be tested by (...)
    Direct download  
     
    Export citation  
     
    Bookmark   9 citations  
  23. Fragmenting the Wave Function.Jonathan Simon - 2018 - Oxford Studies in Metaphysics 11:123-148.
     
    Export citation  
     
    Bookmark   14 citations  
  24.  39
    Epistemology of Wave Function Collapse in Quantum Physics.Charles Wesley Cowan & Roderich Tumulka - 2016 - British Journal for the Philosophy of Science 67 (2):405-434.
    Among several possibilities for what reality could be like in view of the empirical facts of quantum mechanics, one is provided by theories of spontaneous wave function collapse, the best known of which is the Ghirardi–Rimini–Weber theory. We show mathematically that in GRW theory there are limitations to knowledge, that is, inhabitants of a GRW universe cannot find out all the facts true of their universe. As a specific example, they cannot accurately measure the number of collapses that (...)
    Direct download (6 more)  
     
    Export citation  
     
    Bookmark   5 citations  
  25.  21
    Ontology of the Wave Function and the Many-Worlds Interpretation.Lev Vaidman - unknown
    It is argued that the many-worlds interpretation is by far the best interpretation of quantum mechanics. The key points of this view are viewing the wave functions of worlds in three dimensions and understanding probability through self-locating uncertainty.
    No categories
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   3 citations  
  26.  9
    Multipart Wave Functions.Leon Cohen - 1992 - Foundations of Physics 22 (5):691-711.
    Some wave functions separate into two or more distinct regions in phase space. Each region is characterized by a trajectory and a spread about that trajectory. The trajectory is the quantum mechanical current. We show that these regions correspond to parts of the wave function and that these parts are generally nonorthogonal.
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  27.  37
    The Wave Function Collapse as an Effect of Field Quantization.K. Lewin - 2009 - Foundations of Physics 39 (10):1145-1160.
    It is pointed out that ordinary quantum mechanics as a classical field theory cannot account for the wave function collapse if it is not seen within the framework of field quantization. That is needed to understand the particle structure of matter during wave function evolution and to explain the collapse as symmetry breakdown by detection. The decay of a two-particle bound s state and the Stern-Gerlach experiment serve as examples. The absence of the nonlocality problem in (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  28.  54
    Decoherence and Wave Function Collapse.Roland Omnès - 2011 - Foundations of Physics 41 (12):1857-1880.
    The possibility of consistency between the basic quantum principles of quantum mechanics and wave function collapse is reexamined. A specific interpretation of environment is proposed for this aim and is applied to decoherence. When the organization of a measuring apparatus is taken into account, this approach leads also to an interpretation of wave function collapse, which would result in principle from the same interactions with environment as decoherence. This proposal is shown consistent with the non-separable character (...)
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  29.  8
    Wave Function Collapse in Retinal Structure Under Aided/Unaided Conditions.M. Galdamez Karla - 2017 - Cosmos and History 13 (2):126-140.
    No categories
    Direct download  
     
    Export citation  
     
    Bookmark  
  30.  18
    Do Wave Functions Jump? Perspectives on the Work of GianCarlo Ghirardi.Valia Allori, Angelo Bassi, Detlef Duerr & Nino Zanghi (eds.) - 2020 - Springer.
    Book to honor the work of GianCarlo Ghirardi.
    Direct download  
     
    Export citation  
     
    Bookmark  
  31.  9
    The Wave-Function for Primitive Ontologists.Belot Gordon - unknown
    I survey the options for understanding the nature of the wave-function in the setting of the relativistic collapse models recently developed by Tumulka. Some of the options involve surprising features, such as backwards causation or locality.
    No categories
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  32. A New Argument for the Nomological Interpretation of the Wave Function: The Galilean Group and the Classical Limit of Nonrelativistic Quantum Mechanics.Valia Allori - 2017 - International Studies in the Philosophy of Science (2):177-188.
    In this paper I investigate, within the framework of realistic interpretations of the wave function in nonrelativistic quantum mechanics, the mathematical and physical nature of the wave function. I argue against the view that mathematically the wave function is a two-component scalar field on configuration space. First, I review how this view makes quantum mechanics non- Galilei invariant and yields the wrong classical limit. Moreover, I argue that interpreting the wave function as (...)
    Direct download (9 more)  
     
    Export citation  
     
    Bookmark   6 citations  
  33.  20
    The Wave Function as Matter Density: Ontological Assumptions and Experimental Consequences.Markku Jääskeläinen - 2015 - Foundations of Physics 45 (6):591-610.
    The wavefunction is the central mathematical entity of quantum mechanics, but it still lacks a universally accepted interpretation. Much effort is spent on attempts to probe its fundamental nature. Here I investigate the consequences of a matter ontology applied to spherical masses of constant bulk density. The governing equation for the center-of-mass wavefunction is derived and solved numerically. The ground state wavefunctions and resulting matter densities are investigated. A lowering of the density from its bulk value is found for low (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  34. Laws of Nature and the Reality of the Wave Function.Mauro Dorato - 2015 - Synthese 192 (10):3179-3201.
    In this paper I review three different positions on the wave function, namely: nomological realism, dispositionalism, and configuration space realism by regarding as essential their capacity to account for the world of our experience. I conclude that the first two positions are committed to regard the wave function as an abstract entity. The third position will be shown to be a merely speculative attempt to derive a primitive ontology from a reified mathematical space. Without entering any (...)
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark   4 citations  
  35. Realism and Instrumentalism About the Wave Function. How Should We Choose?Mauro Dorato & Federico Laudisa - 2014 - In Shao Gan (ed.), Protective Measurements and Quantum Reality: Toward a New Understanding of Quantum Mechanics. Cambridge University Press.
    The main claim of the paper is that one can be ‘realist’ (in some sense) about quantum mechanics without requiring any form of realism about the wave function. We begin by discussing various forms of realism about the wave function, namely Albert’s configuration-space realism, Dürr Zanghi and Goldstein’s nomological realism about Ψ, Esfeld’s dispositional reading of Ψ Pusey Barrett and Rudolph’s realism about the quantum state. By discussing the articulation of these four positions, and their interrelation, (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   5 citations  
  36.  71
    The Meaning of the Wave Function: In Search of the Ontology of Quantum Mechanics. [REVIEW]Mario Hubert - 2017 - Notre Dame Philosophical Reviews:00-00.
    What is the meaning of the wave-function? After almost 100 years since the inception of quantum mechanics, is it still possible to say something new on what the wave-function is supposed to be? Yes, it is. And Shan Gao managed to do so with his newest book. Here we learn what contemporary physicists and philosophers think about the wave-function; we learn about the de Broglie-Bohm theory, the GRW collapse theory, the gravity-induced collapse theory by (...)
    Direct download  
     
    Export citation  
     
    Bookmark  
  37.  51
    Gravity-Related Wave Function Collapse: Is Superfluid He Exceptional?Lajos Diósi - 2014 - Foundations of Physics 44 (5):483-491.
    The gravity-related model of spontaneous wave function collapse, a longtime hypothesis, damps the massive Schrödinger Cat states in quantum theory. We extend the hypothesis and assume that spontaneous wave function collapses are responsible for the emergence of Newton interaction. Superfluid helium would then show significant and testable gravitational anomalies.
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark  
  38.  99
    Comment on "How to Protect the Interpretation of the Wave Function Against Protective Measurements" by Jos Uffink.Shan Gao - 2011
    It is shown that Uffink's attempt to protect the interpretation of the wave function against protective measurements fails due to several errors in his arguments.
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   9 citations  
  39.  82
    Quantum States of a Time-Asymmetric Universe: Wave Function, Density Matrix, and Empirical Equivalence.Eddy Keming Chen - 2019 - Dissertation, Rutgers University - New Brunswick
    What is the quantum state of the universe? Although there have been several interesting suggestions, the question remains open. In this paper, I consider a natural choice for the universal quantum state arising from the Past Hypothesis, a boundary condition that accounts for the time-asymmetry of the universe. The natural choice is given not by a wave function but by a density matrix. I begin by classifying quantum theories into two types: theories with a fundamental wave (...) and theories with a fundamental density matrix. The Past Hypothesis is compatible with infinitely many initial wave functions, none of which seems to be particularly natural. However, once we turn to density matrices, the Past Hypothesis provides a natural choice---the normalized projection onto the Past Hypothesis subspace in the Hilbert space. Nevertheless, the two types of theories can be empirically equivalent. To provide a concrete understanding of the empirical equivalence, I provide a novel subsystem analysis in the context of Bohmian theories. Given the empirical equivalence, it seems empirically underdetermined whether the universe is in a pure state or a mixed state. Finally, I discuss some theoretical payoffs of the density-matrix theories and present some open problems for future research. (Bibliographic note: the thesis was submitted for the Master of Science in mathematics at Rutgers University.). (shrink)
    No categories
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   7 citations  
  40.  19
    Multi-Time Wave Functions Versus Multiple Timelike Dimensions.Matthias Lienert, Sören Petrat & Roderich Tumulka - 2017 - Foundations of Physics 47 (12):1582-1590.
    Multi-time wave functions are wave functions for multi-particle quantum systems that involve several time variables. In this paper we contrast them with solutions of wave equations on a space–time with multiple timelike dimensions, i.e., on a pseudo-Riemannian manifold whose metric has signature such as \ or \, instead of \. Despite the superficial similarity, the two behave very differently: whereas wave equations in multiple timelike dimensions are typically mathematically ill-posed and presumably unphysical, relevant Schrödinger equations for (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  41.  19
    Does the Quantum Mechanical Wave Function Exist?Claus Kiefer - 2019 - Philosophical Problems in Science 66:111-128.
    I address the question whether the wave function in quantum theory exists as a real quantity or not. For this purpose, I discuss the essentials of the quantum formalism and emphasize the central role of the superposition principle. I then explain the measurement problem and discuss the process of decoherence. Finally, I address the special features that the quantization of gravity brings into the game. From all of this I conclude that the wave function really exists, (...)
    No categories
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  42.  14
    Gutzwiller Wave Functions for Correlated Electrons: Theory and Applications.Florian Gebhard - 2006 - Philosophical Magazine 86 (13-14):1847-1876.
  43.  26
    World in the Wave Function: A Metaphysics for Quantum Physics, by Alyssa Ney.James Read - forthcoming - Mind.
  44.  8
    Wave-Function and the Concept of a Nano-Mental Element of Representation.Eric Wallich - 1993 - Acta Biotheoretica 41 (1-2):119-125.
    Scientific endeavour has often tried to localize superior cerebral functions either in areas like the ones described by Broca as being those connected with language in the left hemisphere, or in the huge array of the hundred billion of interconnected neurons. But in this last case the coined description of the grandmother neuron, tends to show humorously that hopes have fallen short of their target.Along the same lines, the specific timing of electric neural activity is known to take place around (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  45. Derivation of the Meaning of the Wave Function.Shan Gao - 2011
    We show that the physical meaning of the wave function can be derived based on the established parts of quantum mechanics. It turns out that the wave function represents the state of random discontinuous motion of particles, and its modulus square determines the probability density of the particles appearing in certain positions in space.
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   5 citations  
  46.  44
    Reality and the Role of the Wave Function in Quantum Theory.Sheldon Goldstein & Nino Zanghi - unknown
    The most puzzling issue in the foundations of quantum mechanics is perhaps that of the status of the wave function of a system in a quantum universe. Is the wave function objective or subjective? Does it represent the physical state of the system or merely our information about the system? And if the former, does it provide a complete description of the system or only a partial description? We shall address these questions here mainly from a (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   40 citations  
  47.  74
    An Argument Against the Realistic Interpretation of the Wave Function.Carlo Rovelli - 2016 - Foundations of Physics 46 (10):1229-1237.
    Testable predictions of quantum mechanics are invariant under time reversal. But the evolution of the quantum state in time is not so, neither in the collapse nor in the no-collapse interpretations of the theory. This is a fact that challenges any realistic interpretation of the quantum state. On the other hand, this fact raises no difficulty if we interpret the quantum state as a mere calculation device, bookkeeping past real quantum events.
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   14 citations  
  48.  20
    Constructibility of the Universal Wave Function.Arkady Bolotin - 2016 - Foundations of Physics 46 (10):1253-1268.
    This paper focuses on a constructive treatment of the mathematical formalism of quantum theory and a possible role of constructivist philosophy in resolving the foundational problems of quantum mechanics, particularly, the controversy over the meaning of the wave function of the universe. As it is demonstrated in the paper, unless the number of the universe’s degrees of freedom is fundamentally upper bounded or hypercomputation is physically realizable, the universal wave function is a non-constructive entity in the (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark  
  49.  30
    Spontaneous Localizations of the Wave Function and Classical Behavior.Andor Frenkel - 1990 - Foundations of Physics 20 (2):159-188.
    We investigate and develop further two models, the GRW model and the K model, in which the Schrödinger evolution of the wave function is spontaneously and repeatedly interrupted by random, approximate localizations, also called “self-reductions” below. In these models the center of mass of a macroscopic solid body is well localized even if one disregards the interactions with the environment. The motion of the body shows a small departure from the classical motion. We discuss the prospects and the (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  50.  3
    Status of the Wave Function of Quantum Mechanics, or, What is Quantum Mechanics Trying to Tell Us?D.-M. Cabaret, T. Grandou & E. Perrier - 2022 - Foundations of Physics 52 (3):1-29.
    The most debated status of the wave function of Quantum Mechanics is discussed in the light of the epistemological vs ontological opposition.
    Direct download (3 more)  
    Translate
     
     
    Export citation  
     
    Bookmark  
1 — 50 / 1000