Bohmian mechanics and the Ghirardi-Rimini-Weber theory provide opposite resolutions of the quantum measurement problem: the former postulates additional variables (the particle positions) besides the wave function, whereas the latter implements spontaneous collapses of the wave function by a nonlinear and stochastic modification of Schrödinger's equation. Still, both theories, when understood appropriately, share the following structure: They are ultimately not about wave functions but about 'matter' moving in space, represented by either particle trajectories, fields on space-time, or a discrete set of (...) space-time points. The role of the wave function then is to govern the motion of the matter. (shrink)
A major disagreement between different views about the foundations of quantum mechanics concerns whether for a theory to be intelligible as a fundamental physical theory it must involve a ‘primitive ontology’ (PO), i.e. variables describing the distribution of matter in four-dimensional space–time. In this article, we illustrate the value of having a PO. We do so by focusing on the role that the PO plays for extracting predictions from a given theory and discuss valid and invalid derivations of predictions. To (...) this end, we investigate a number of examples based on toy models built from the elements of familiar interpretations of quantum theory. (shrink)
Quantum philosophy, a peculiar twentieth-century malady, is responsible for most of the conceptual muddle plaguing the foundations of quantum physics. When this philosophy is eschewed, one naturally arrives at Bohmian mechanics, which is what emerges from Schrodinger's equation for a nonrelativistic system of particles when we merely insist that 'particles' means particles. While distinctly non-Newtonian, Bohmian mechanics is a fully deterministic theory of particles in motion, a motion choreographed by the wave function. The quantum formalism emerges when measurement situations are (...) analyzed according to this theory. When the quantum formalism is regarded as arising in this way, the paradoxes and perplexities so often associated with quantum theory simply evaporate.Bohr's ... approach to atomic problems ... is really remarkable. He is completely convinced that any understanding in the usual sense of the word is impossible. Therefore the conversation is almost immediately driven into philosophical questions, and soon you no longer know whether you really take the position he is attacking, or whether you really must attack the position he is defending. (shrink)
Schrödinger’s first proposal for the interpretation of quantum mechanics was based on a postulate relating the wave function on configuration space to charge density in physical space. Schrödinger apparently later thought that his proposal was empirically wrong. We argue here that this is not the case, at least for a very similar proposal with charge density replaced by mass density. We argue that when analyzed carefully, this theory is seen to be an empirically adequate many-worlds theory and not an empirically (...) inadequate theory describing a single world. Moreover, this formulation—Schrödinger’s first quantum theory—can be regarded as a formulation of the many-worlds view of quantum mechanics that is ontologically clearer than Everett’s. (shrink)
The most puzzling issue in the foundations of quantum mechanics is perhaps that of the status of the wave function of a system in a quantum universe. Is the wave function objective or subjective? Does it represent the physical state of the system or merely our information about the system? And if the former, does it provide a complete description of the system or only a partial description? We shall address these questions here mainly from a Bohmian perspective, and shall (...) argue that part of the difficulty in ascertaining the status of the wave function in quantum mechanics arises from the fact that there are two different sorts of wave functions involved. The most fundamental wave function is that of the universe. From it, together with the configuration of the universe, one can define the wave function of a subsystem. We argue that the fundamental wave function, the wave function of the universe, has a law-like character. (shrink)
Bohmian mechanics is a theory about point particles moving along trajectories. It has the property that in a world governed by Bohmian mechanics, observers see the same statistics for experimental results as predicted by quantum mechanics. Bohmian mechanics thus provides an explanation of quantum mechanics. Moreover, the Bohmian trajectories are defined in a non-conspiratorial way by a few simple laws.
In Bohmian mechanics elementary particles exist objectively, as point particles moving according to a law determined by a wavefunction. In this context, questions as to whether the particles of a certain species are real---questions such as, Do photons exist? Electrons? Or just the quarks?---have a clear meaning. We explain that, whatever the answer, there is a corresponding Bohm-type theory, and no experiment can ever decide between these theories. Another question that has a clear meaning is whether particles are intrinsically distinguishable, (...) i.e., whether particle world lines have labels indicating the species. We discuss the intriguing possibility that the answer is no, and particles are points---just points. (shrink)
A source of much difficulty and confusion in the interpretation of quantum mechanics is a naive realism about operators. By this we refer to various ways of taking too seriously the notion of operator-as-observable, and in particular to the all too casual talk about measuring operators that occurs when the subject is quantum mechanics. Without a specification of what should be meant by measuring a quantum observable, such an expression can have no clear meaning. A definite specification is provided by (...) Bohmian mechanics, a theory that emerges from Schrödinger's equation for a system of particles when we merely insist that particles means particles. Bohmian mechanics clarifies the status and the role of operators as observables in quantum mechanics by providing the operational details absent from standard quantum mechanics. It thereby allows us to readily dismiss all the radical claims traditionally enveloping the transition from the classical to the quantum realm — for example, that we must abandon classical logic or classical probability. The moral is rather simple: Beware naive realism, especially about operators! (shrink)
It is well known that density matrices can be used in quantum mechanics to represent the information available to an observer about either a system with a random wave function or a system that is entangled with another system. We point out another role, previously unnoticed in the literature, that a density matrix can play: it can be the “conditional density matrix,” conditional on the configuration of the environment. A precise definition can be given in the context of Bohmian mechanics, (...) whereas orthodox quantum mechanics is too vague to allow a sharp definition, except perhaps in special cases. In contrast to statistical and reduced density matrices, forming the conditional density matrix involves no averaging. In Bohmian mechanics with spin, the conditional density matrix replaces the notion of conditional wave function, as the object with the same dynamical significance as the wave function of a Bohmian system. (shrink)
Bohmian mechanics is a quantum theory with a clear ontology. To make clear what we mean by this, we shall proceed by recalling first what are the problems of quantum mechanics. We shall then briefly sketch the basics of Bohmian mechanics and indicate how Bohmian mechanics solves these problems and clarifies the status and the role of of the quantum formalism.
We criticize speculations to the effect that quantum mechanics is fundamentally about information. We do this by pointing out how unfounded such speculations in fact are. Our analysis focuses on the dubious claims of this kind recently made by Anton Zeilinger.
The year 2005 has been named the World Year of Physics in recognition of the 100th anniversary of Albert Einstein's "Miracle Year," in which he published four landmark papers which had deep and great influence on the last and the current century: quantum theory, general relativity, and statistical mechanics. Despite the enormous importance that Einstein’s discoveries played in these theories, most physicists adopt a version of quantum theory which is incompatible with the idea that motivated Einstein in the first place. (...) This seems to suggest that Einstein was fundamentally incapable of appreciating the `quantum revolution,’ and that his vision of physics as an attempt to reach a complete and comprehensive description of reality was ultimately impossible to obtain. Relativity theory has provided us with a picture of reality in which the world can be though as independent on who observes it, and the same can be said for statistical mechanics. Instead, quantum mechanics seems to suggest that physical objects do not exist `out there’ when someone is not observing them. In this framework, it is often suggested that any kind of causal explanation is impossible in the atomic and subatomic world, and therefore should be abandoned. This is why many think that it is in principle impossible for quantum theory to provide us with a coherent and comprehensive view of the world, in contrast with what happens with relativity and statistical mechanics. Is it really impossible to pursue Einstein’s ideal of physics also in the quantum framework? This book argues that this is not the case: the central idea is that Einstein’s vision of physics is still a live option, and indeed it is the one that best allows obtaining a unitary understanding of our physical theories. One can consider all the three theories mentioned above, suitably modified, as theories that are able to account and explain the world around us without too much departure from the classical framework. ---------------------------------------------------------------------------------------------------- -------------------------------------------------- -/- La teoria della relatività, la meccanica statistica e la meccanica quantistica hanno profondamente rivoluzionato il nostro modo di concepire spazio, tempo, materia, probabilità e causalità, nonché il rapporto tra universo fisico ed osservatore, nozioni che sono state al centro della discussione filosofica dal mondo greco fino ai nostri giorni. Questo volume, opera di Valia Allori, Mauro Dorato, Federico Laudisa e Nino Zanghì, non solo intende suggerire nuovi metodi di confronto tra fisica e filosofia, ma prova altresì a rendere espliciti i presupposti filosofici che sono presenti nell'interpretazione che i fisici stessi danno del formalismo matematico. (shrink)
Classical physics is about real objects, like apples falling from trees, whose motion is governed by Newtonian laws. In standard quantum mechanics only the wave function or the results of measurements exist, and to answer the question of how the classical world can be part of the quantum world is a rather formidable task. However, this is not the case for Bohmian mechanics, which, like classical mechanics, is a theory about real objects. In Bohmian terms, the problem of the classical (...) limit becomes very simple: when do the Bohmian trajectories look Newtonian? (shrink)
Contrary to the widespread belief, the problem of the emergence of classical mechanics from quantum mechanics is still open. In spite of many results on the ¯h → 0 asymptotics, it is not yet clear how to explain within standard quantum mechanics the classical motion of macroscopic bodies. In this paper we shall analyze special cases of classical behavior in the framework of a precise formulation of quantum mechanics, Bohmian mechanics, which contains in its own structure the possibility of describing (...) real objects in an observer-independent way. (shrink)
Contrary to the widespread belief, the problem of the emergence of classical mechanics from quantum mechanics is still open. In spite of many results on the ¯h → 0 asymptotics, it is not yet clear how to explain within standard quantum mechanics the classical motion of macroscopic bodies. In this paper we shall analyze special cases of classical behavior in the framework of a precise formulation of quantum mechanics, Bohmian mechanics, which contains in its own structure the possibility of describing (...) real objects in an observer-independent way. (shrink)
The Ghirardi–Rimini–Weber (GRW) theory of spontaneous wave function collapse is known to provide a quantum theory without observers, in fact two different ones by using either the matter density ontology (GRWm) or the flash ontology (GRWf). Both theories are known to make predictions different from those of quantum mechanics, but the difference is so small that no decisive experiment can as yet be performed. While some testable deviations from quantum mechanics have long been known, we provide here something that has (...) until now been missing: a formalism that succinctly summarizes the empirical predictions of GRWm and GRWf. We call it the GRW formalism. Its structure is similar to that of the quantum formalism but involves different operators. In other words, we establish the validity of a general algorithm for directly computing the testable predictions of GRWm and GRWf. We further show that some well-defined quantities cannot be measured in a GRW world, for example the number of collapses in a system during a chosen time interval. (shrink)
We analyze the origin of quantum randomness within the framework of a completely deterministic theory of particle motion—Bohmian mechanics. We show that a universe governed by this mechanics evolves in such a way as to give rise to the appearance of randomness, with empirical distributions in agreement with the predictions of the quantum formalism. Crucial ingredients in our analysis are the concept of the effective wave function of a subsystem and that of a random system. The latter is a notion (...) of interest in its own right and is relevant to any discussion of the role of probability in a deterministic universe. (shrink)
In this paper (in Italian) we discuss how quantum theories can be thought of as having the same structure. If so, even the theories that appear to be about the wave function are incomplete, even if in a way which is very different from the one Einstein proposed.
La meccanica quantistica è una delle più grandi conquiste intellettuali del xx secolo. Le sue leggiregolano il mondo atomico e subatomico e si riverberano su una miriade di fenomeni del mondomacroscopico, dalla formazione dei cristalli alla superconduttività, dalle proprietà dei fluidi a bassatemperatura agli spettri di emissione di una candela che brucia o di una supernova che esplode, daimeccanismi di combustione della fornace solare ai principi di base delle nanotecnologie. Non c’èquasi nulla nel mondo che ci circonda su cui non (...) soffi l’alito delle leggi quantistiche. Tuttavia, per come è usualmente presentata nei libri di testo, la meccanica quantistica è sostanzialmenteun’insieme di regole per calcolare le distribuzioni di probabilità dei risultati di qualunqueesperimento (nel dominio di validità della meccanica quantistica). In quanto tale, non ci forniscedirettamente una descrizione della realtà. Una descrizione della realtà, cioè un’ ontologia , dovrebbedirci che cosa c’è nel mondo e come si comporta, quali sono i processi che si realizzano a livellomicroscopico e, di conseguenza, fornirci una spiegazione del formalismo quantistico. (shrink)
Bohmian mechanics is a theory about point particles moving along trajectories. It has the property that in a world governed by Bohmian mechanics, observers see the same statistics for experimental results as predicted by quantum mechanics. Bohmian mechanics thus provides an explanation of quantum mechanics. Moreover, the Bohmian trajectories are defined in a non-conspiratorial way by a few simple laws.
La meccanica quantistica è una delle più grandi conquiste intellettuali del xx secolo. Le sue leggi regolano il mondo atomico e subatomico e si riverberano su una miriade di fenomeni del mondo macroscopico, dalla formazione dei cristalli alla superconduttività, dalle proprietà dei fluidi a bassa temperatura agli spettri di emissione di una candela che brucia o di una supernova che esplode, dai meccanismi di combustione della fornace solare ai principi di base delle nanotecnologie. Non c’è quasi nulla nel mondo che (...) ci circonda su cui non soffi l’alito delle leggi quantistiche. Tuttavia, per come è usualmente presentata nei libri di testo, la meccanica quantistica è sostanzialmente un’insieme di regole per calcolare le distribuzioni di probabilità dei risultati di qualunque esperimento (nel dominio di validità della meccanica quantistica). In quanto tale, non ci fornisce direttamente una descrizione della realtà. Una descrizione della realtà, cioè un’ontologia, dovrebbe dirci che cosa c’è nel mondo e come si comporta, quali sono i processi che si realizzano a livello microscopico e, di conseguenza, fornirci una spiegazione del formalismo quantistico. (shrink)
This is a review of the book Quantum [Un]speakables: From Bell to Quantum Information. Reinhold A. Bertlmann and Anton Zeilinger (editors). xxii + 483 pp. Springer-Verlag, 2002. $89.95.
My new homepage is at jostylr.com . The corresponding e-mail address is [email protected] . On my new homepage there will be information about Bohmian mechanics, my papers, professional information, and personal information. As of 7/30/04, there is not much there, but it should improve.