Results for 'active DNA demethylation'

998 found
Order:
  1.  3
    AID in reprogramming: Quick and efficient.Wenbin Deng - 2010 - Bioessays 32 (5):385-387.
    Current methods of reprogramming differentiated cells into induced pluripotent stem cells remain slow and inefficient. In a recent report published online in Nature, Bhutani et al.1 developed a cell fusion strategy, achieving quick and efficient reprogramming toward pluripotency. Using this assay, they identified an immune system protein called activation‐induced cytidine deaminase, or AID, which unexpectedly is actually able to “aid” in reprogramming due to its involvement in DNA demethylation that is required for induction of the two key pluripotency genes, (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  2.  6
    Maternal histone variants and their chaperones promote paternal genome activation and boost somatic cell reprogramming.Peng Yang, Warren Wu & Todd S. Macfarlan - 2015 - Bioessays 37 (1):52-59.
    The mammalian egg employs a wide spectrum of epigenome modification machinery to reprogram the sperm nucleus shortly after fertilization. This event is required for transcriptional activation of the paternal/zygotic genome and progression through cleavage divisions. Reprogramming of paternal nuclei requires replacement of sperm protamines with canonical and non‐canonical histones, covalent modification of histone tails, and chemical modification of DNA (notably oxidative demethylation of methylated cytosines). In this essay we highlight the role maternal histone variants play during developmental reprogramming following (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark  
  3.  5
    The enemy within: An epigenetic role of retrotransposons in cancer initiation.Adam S. Wilkins - 2010 - Bioessays 32 (10):856-865.
    This article proposes that cancers can be initiated by retrotransposon (RTN) activation through changes in the transcriptional regulation of nearby genes. I first detail the hypothesis and then discuss the nature of physiological stress(es) in RTN activation; the role of DNA demethylation in the initiation and propagation of new RTN states; the connection between ageing and cancer incidence and the involvement of activated RTNs in the chromosomal aberrations that feature in cancer progression. The hypothesis neither replaces nor invalidates other (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  4.  8
    Epigenetics and parental effects.Laurent Kappeler & Michael J. Meaney - 2010 - Bioessays 32 (9):818-827.
    Parental effects are a major source of phenotypic plasticity and may influence offspring phenotype in concert with environmental demands. Studies of “environmental epigenetics” suggest that (1) DNA methylation states are variable and that both demethylation and remethylation occur in post‐mitotic cells, and (2) that remodeling of DNA methylation can occur in response to environmentally driven intracellular signaling pathways. Studies of mother‐offspring interactions in rodents suggest that parental signals influence the DNA methylation, leading to stable changes in gene expression. If (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  5.  2
    DNA methylation with a sting: An active DNA methylation system in the honeybee.Matthias Schaefer & Frank Lyko - 2007 - Bioessays 29 (3):208-211.
    The existence of DNA methylation in insects has been a controversial subject over a long period of time. The recently completed genome sequence of the honeybee Apis mellifera has revealed the first insect with a full complement of DNA methyltransferases.1 A parallel study demonstrated that these enzymes are catalytically active and that Apis genes can be methylated in specific patterns.2 These findings establish bees as a model to analyze the function of DNA methylation systems in invertebrate organisms and might (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  6.  4
    Eukaryotic DNA methylation and demethylation – sequence and strand specificity.Arthur Weissbach - 1987 - Bioessays 7 (6):273-274.
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  7.  7
    Integrating DNA methylation dynamics into a framework for understanding epigenetic codes.Keith E. Szulwach & Peng Jin - 2014 - Bioessays 36 (1):107-117.
    Genomic function is dictated by a combination of DNA sequence and the molecular mechanisms controlling access to genetic information. Access to DNA can be determined by the interpretation of covalent modifications that influence the packaging of DNA into chromatin, including DNA methylation and histone modifications. These modifications are believed to be forms of “epigenetic codes” that exist in discernable combinations that reflect cellular phenotype. Although DNA methylation is known to play important roles in gene regulation and genomic function, its contribution (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  8.  8
    Loss of DNA methylation disrupts syncytiotrophoblast development: Proposed consequences of aberrant germline gene activation.Georgia Lea & Courtney W. Hanna - 2024 - Bioessays 46 (1):2300140.
    DNA methylation is a repressive epigenetic modification that is essential for development and its disruption is widely implicated in disease. Yet, remarkably, ablation of DNA methylation in transgenic mouse models has limited impact on transcriptional states. Across multiple tissues and developmental contexts, the predominant transcriptional signature upon loss of DNA methylation is the de‐repression of a subset of germline genes, normally expressed in gametogenesis. We recently reported loss of de novo DNA methyltransferase DNMT3B resulted in up‐regulation of germline genes and (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  9.  4
    Environmental stimuli and transcriptional activity generate transient changes in DNA torsional tension.Raul A. Saavedra - 1990 - Bioessays 12 (3):125-128.
    Transient changes in DNA torsional tension are generated by environmental stimuli and transcriptional activity. In eukaryotic cells, these changes can only be accommodated by a chromatin structure that is flexible. This property of chromatin may be essential to the regulation of eukaryotic gene activity.
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  10.  28
    DNA Methylation in Embryo Development: Epigenetic Impact of ART.Sebastian Canovas, Pablo J. Ross, Gavin Kelsey & Pilar Coy - 2017 - Bioessays 39 (11):1700106.
    DNA methylation can be considered a component of epigenetic memory with a critical role during embryo development, and which undergoes dramatic reprogramming after fertilization. Though it has been a focus of research for many years, the reprogramming mechanism is still not fully understood. Recent results suggest that absence of maintenance at DNA replication is a major factor, and that there is an unexpected role for TET3-mediated oxidation of 5mC to 5hmC in guarding against de novo methylation. Base-resolution and genome-wide profiling (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  11.  6
    DNA topoisomerases: Advances in understanding of cellular roles and multi‐protein complexes via structure‐function analysis.Shannon J. McKie, Keir C. Neuman & Anthony Maxwell - 2021 - Bioessays 43 (4):2000286.
    DNA topoisomerases, capable of manipulating DNA topology, are ubiquitous and indispensable for cellular survival due to the numerous roles they play during DNA metabolism. As we review here, current structural approaches have revealed unprecedented insights into the complex DNA‐topoisomerase interaction and strand passage mechanism, helping to advance our understanding of their activities in vivo. This has been complemented by single‐molecule techniques, which have facilitated the detailed dissection of the various topoisomerase reactions. Recent work has also revealed the importance of topoisomerase (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  12.  2
    PARP‐mediated proteasome activation: A co‐ordination of DNA repair and protein degradation?Jenny Arnold & Tilman Grune - 2002 - Bioessays 24 (11):1060-1065.
    During the evolution of aerobic life, antioxidant defence systems developed that either directly prevent oxidative modifications of the cellular constituents or remove the modified components. An example of the latter is the proteasome, which removes cytosolic oxidised proteins. Recently, a novel mechanism of activation of the nuclear 20S proteasome was discovered: automodified poly‐(ADP‐ribose) polymerase‐1 (PARP‐1) activates the proteasome to facilitate selective degradation of oxidatively damaged histones. Since activation of the PARP‐1 itself is induced by DNA damage and is supposed to (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  13.  8
    Mammalian DNA ligases.Alan E. Tomkinson & David S. Levin - 1997 - Bioessays 19 (10):893-901.
    DNA joining enzymes play an essential role in the maintenance of genomic integrity and stability. Three mammalian genes encoding DNA ligases, LIG1, LIG3 and LIG4, have been identified. Since DNA ligase II appears to be derived from DNA ligase III by a proteolytic mechanism, the three LIG genes can account for the four biochemically distinct DNA ligase activities, DNA ligases I, II, III and IV, that have been purified from mammalian cell extracts. It is probable that the specific cellular roles (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  14.  3
    Problems and paradigms: The active role of DNA as a chromatin organizer.Micaela Caserta & Ernesto Di Mauro - 1996 - Bioessays 18 (8):685-693.
    Histone octamers (hos) and DNA topoisomerase I contribute, along with other proteins, to the higher order structure of chromatin. Here we report on the similar topological requirements of these two protein model systems for their interaction with DNA. Both histone octamers and topoisomerase I positively and consistently respond to DNA supercoiling and curvature, and to the spatial accessibility of the preferential interaction sites. These findings (1) point to the relevance of the topology‐related DNA conformation in protein interactions and define the (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  15.  4
    Molecular biology of plasminogen activators and recombinant DNA progress.S. A. Cederholm-Williams - 1984 - Bioessays 1 (4):168-173.
    Plasminogen activators are enzymes with multiple roles. They play vital parts in maintaining the functional integrity of the vascular system and they are also involved in processes of tissue reorganization. In this review, the molecular properties of these enzymes that make them ideal targets for genetic and biochemical engineering to satisfy a potential therapeutic role are described.
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  16.  12
    On‐site remodeling at chromatin: How multiprotein complexes are rebuilt during DNA repair and transcriptional activation.Thaleia Papadopoulou & Holger Richly - 2016 - Bioessays 38 (11):1130-1140.
    In this review, we discuss a novel on‐site remodeling function that is mediated by the H2A‐ubiquitin binding protein ZRF1. ZRF1 facilitates the remodeling of multiprotein complexes at chromatin and lies at the heart of signaling processes that occur at DNA damage sites and during transcriptional activation. In nucleotide excision repair ZRF1 remodels E3 ubiquitin ligase complexes at the damage site. During embryonic stem cell differentiation, it contributes to retinoic acid‐mediated gene activation by altering the subunit composition of the Mediator complex. (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  17.  6
    Optimizing DNA hypomethylating therapy in acute myeloid leukemia and myelodysplastic syndromes.Jasmin Straube, Steven W. Lane & Therese Vu - 2021 - Bioessays 43 (10):2100125.
    The DNA hypomethylating agents (HMA) azacitidine (AZA) and decitabine (DAC) improve survival and transfusion independence in myelodysplastic syndrome (MDS) and enable a low intensity cytotoxic treatment for aged AML patients unsuitable for intensive chemotherapy, particularly in combination with novel agents. The proposed mechanism of AZA and DAC relies on active DNA replication and therefore patient responses are only observed after multiple cycles of treatment. Although extended dosing may provide the optimal scheduling, the reliance of injectable formulation of the drug (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  18.  6
    Pioneer factors for DNA replication initiation in metazoans.Yue Wang & Jing Liang - forthcoming - Bioessays:2400002.
    Precise DNA replication is fundamental for genetic inheritance. In eukaryotes, replication initiates at multiple origins that are first “licensed” and subsequently “fired” to activate DNA synthesis. Despite the success in identifying origins with specific DNA motifs in Saccharomyces cerevisiae, no consensus sequence or sequences with a predictive value of replication origins have been recognized in metazoan genomes. Rather, epigenetic rules and chromatin structures are believed to play important roles in governing the selection and activation of replication origins. We propose that (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  19.  4
    Host cell–plasmid interactions in the expression of DNA donor activity by F + strains of Escherichia coli K‐12.Philip M. Silverman - 1985 - Bioessays 2 (6):254-259.
    DNA transfer directly from cell to cell (conjugation) is common among prokaryotes, particularly Gram‐negative bacteria like Escherichia coli. The phenomenon invariably requires a set of plasmid genes in the DNA donor cell. In addition, E. coli itself makes limited and specific contributions to the donor activity of strains carrying the conjugative plasmid F. These contributions have yet to be defined biochemically, but it is already clear that the cell envelope is an importan nexus between plasmid‐ and chromosome‐encoded proteins required for (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  20.  12
    Keeping intracellular DNA untangled: A new role for condensin?Joaquim Roca, Silvia Dyson, Joana Segura, Antonio Valdés & Belén Martínez-García - 2022 - Bioessays 44 (1):2100187.
    The DNA‐passage activity of topoisomerase II accidentally produces DNA knots and interlinks within and between chromatin fibers. Fortunately, these unwanted DNA entanglements are actively removed by some mechanism. Here we present an outline on DNA knot formation and discuss recent studies that have investigated how intracellular DNA knots are removed. First, although topoisomerase II is able to minimize DNA entanglements in vitro to below equilibrium values, it is unclear whether such capacity performs equally in vivo in chromatinized DNA. Second, DNA (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  21.  11
    DNA replication timing: Coordinating genome stability with genome regulation on the X chromosome and beyond.Amnon Koren - 2014 - Bioessays 36 (10):997-1004.
    Recent studies based on next‐generation DNA sequencing have revealed that the female inactive X chromosome is replicated in a rapid, unorganized manner, and undergoes increased rates of mutation. These observations link the organization of DNA replication timing to gene regulation on one hand, and to the generation of mutations on the other hand. More generally, the exceptional biology of the inactive X chromosome highlights general principles of genome replication. Cells may control replication timing by a combination of intrinsic replication origin (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  22.  7
    DNA replication timing: Biochemical mechanisms and biological significance.Nicholas Rhind - 2022 - Bioessays 44 (11):2200097.
    The regulation of DNA replication is a fascinating biological problem both from a mechanistic angle—How is replication timing regulated?—and from an evolutionary one—Why is replication timing regulated? Recent work has provided significant insight into the first question. Detailed biochemical understanding of the mechanism and regulation of replication initiation has made possible robust hypotheses for how replication timing is regulated. Moreover, technical progress, including high‐throughput, single‐molecule mapping of replication initiation and single‐cell assays of replication timing, has allowed for direct testing of (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  23.  6
    Insights into DNA cleavage by MutL homologs from analysis of conserved motifs in eukaryotic Mlh1.Christopher D. Putnam & Richard D. Kolodner - 2023 - Bioessays 45 (9):2300031.
    MutL family proteins contain an N‐terminal ATPase domain (NTD), an unstructured interdomain linker, and a C‐terminal domain (CTD), which mediates constitutive dimerization between subunits and often contains an endonuclease active site. Most MutL homologs direct strand‐specific DNA mismatch repair by cleaving the error‐containing daughter DNA strand. The strand cleavage reaction is poorly understood; however, the structure of the endonuclease active site is consistent with a two‐ or three‐metal ion cleavage mechanism. A motif required for this endonuclease activity is (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  24.  4
    DNA adenine methylation in eukaryotes: Enzymatic mark or a form of DNA damage?Matthias Bochtler & Humberto Fernandes - 2021 - Bioessays 43 (3):2000243.
    Abstract6‐methyladenine (6mA) is fairly abundant in nuclear DNA of basal fungi, ciliates and green algae. In these organisms, 6mA is maintained near transcription start sites in ApT context by a parental‐strand instruction dependent maintenance methyltransferase and is positively associated with transcription. In animals and plants, 6mA levels are high only in organellar DNA. The 6mA levels in nuclear DNA are very low. They are attributable to nucleotide salvage and the activity of otherwise mitochondrial METTL4, and may be considered as a (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  25.  54
    Epigenetic Modifications of Cytosine: Biophysical Properties, Regulation, and Function in Mammalian DNA.Jack S. Hardwick, Andrew N. Lane & Tom Brown - 2018 - Bioessays 40 (3):1700199.
    To decode the function and molecular recognition of several recently discovered cytosine derivatives in the human genome – 5-hydroxymethylcytosine, 5-formylcytosine, and 5-carboxylcytosine – a detailed understanding of their effects on the structural, chemical, and biophysical properties of DNA is essential. Here, we review recent literature in this area, with particular emphasis on features that have been proposed to enable the specific recognition of modified cytosine bases by DNA-binding proteins. These include electronic factors, modulation of base-pair stability, flexibility, and radical changes (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  26.  13
    Cell Fate Regulation upon DNA Damage: p53 Serine 46 Kinases Pave the Cell Death Road.Magdalena C. Liebl & Thomas G. Hofmann - 2019 - Bioessays 41 (12):1900127.
    Mild and massive DNA damage are differentially integrated into the cellular signaling networks and, in consequence, provoke different cell fate decisions. After mild damage, the tumor suppressor p53 directs the cellular response to cell cycle arrest, DNA repair, and cell survival, whereas upon severe damage, p53 drives the cell death response. One posttranslational modification of p53, phosphorylation at Serine 46, selectively occurs after severe DNA damage and is envisioned as a marker of the cell death response. However, the molecular mechanism (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  27.  8
    DNA polymerase epsilon: The latest member in the family of mammalian DNA polymerases.Juhani E. Syväoja - 1990 - Bioessays 12 (11):533-536.
    DNA polymerase epsilon is a mammalian polymerase that has a tightly associated 3′→5′ exonuclease activity. Because of this readily detectable exonuclease activity, the enzyme has been regarded as a form of DNA polymerase delta, an enzyme which, together with DNA polymerase alpha, is in all probability required for the replication of chromosomal DNA. Recently, it was discovered that DNA polymerase epsilon is both catalytically and structurally distinct from DNA polymerase delta. The most striking difference between the two DNA polymerases is (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  28.  5
    Retroviral DNA integration.Anna Marie Skalka & Jonathan Leis - 1984 - Bioessays 1 (5):206-210.
    The synthesis and integration of DNA into the genome of its host cell is a normal step in the replication of the retroviruses. Previous studies have provided details concerning the structure of viral DNA and viral and host integration sites. More recent genetic and biochemical results have expanded our understanding considerably: it should soon be possible to describe the exact viral DNA sequence recognized during the integration reaction for several viruses. In addition, at least one of the viral proteins and (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  29.  5
    DNA packaging and cutting by phage terminases: Control in phage T4 by a synaptic mechanism.Lindsay W. Black - 1995 - Bioessays 17 (12):1025-1030.
    Phage DNA packaging occurs by DNA translocation into a prohead. Terminases are enzymes which initiate DNA packaging by cutting the DNA concatemer, and they are closely fitted structurally to the portal vertex of the prohead to form a ‘packasome’. Analysis among a number of phages supports an active role of the terminases in coupling ATP hydrolysis to DNA translocation through the portal. In phage T4 the small terminase subunit promotes a sequence‐specific terminase gene amplification within the chromosome. This link (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  30.  13
    Junk or functional DNA? ENCODE and the function controversy.Pierre-Luc Germain, Emanuele Ratti & Federico Boem - 2014 - Biology and Philosophy 29 (6):807-831.
    In its last round of publications in September 2012, the Encyclopedia Of DNA Elements (ENCODE) assigned a biochemical function to most of the human genome, which was taken up by the media as meaning the end of ‘Junk DNA’. This provoked a heated reaction from evolutionary biologists, who among other things claimed that ENCODE adopted a wrong and much too inclusive notion of function, making its dismissal of junk DNA merely rhetorical. We argue that this criticism rests on misunderstandings concerning (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   23 citations  
  31.  6
    DNA-histones a computer model.C. Portelli - 1976 - Acta Biotheoretica 25 (2-3):130-152.
    The model of DNA-histones has the following elements: The hydrogen bonds between the complementary nucleotide bases function as informational gates. When the electrons π of one nucleotide base are excited, an exchange of protons is produced between the two complementary bases. The result is the displacement of the conjugated double bonds which facilitates the inter-molecular transmission of the electronic wave of excitation by electro-magnetic coupling. Each triplet of nucleotide bases of DNA fixes one definite amino acid . Between the nucleotide (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  32.  1
    Dynamics of DNA methylation during development.Michael Brandeis, Mira Ariel & Howard Cedar - 1993 - Bioessays 15 (11):709-713.
    DNA methylation plays a role in the repression of gene expression in animal cells. In the mouse preimplantation embryo, most genes are unmethylated but a wave of de novo methylation prior to gastrulation generates a bimodal pattern characterized by unmethylated CpG island‐containing housekeeping genes and fully modified tissue‐specific genes. Demethylaton of individual genes then takes place during cell type specific differentiation, and this demodification may be a required step in the process of transcriptional activation. DNA modification is also involved in (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  33.  5
    The DNA of Meaningful Learning in Management.David Saiia, Granger Macy & Maureen Boyd - 2006 - Proceedings of the International Association for Business and Society 17:322-327.
    This paper explores how meaningful learning in management education can occur when we keep our focus on classroom activities and strategies that fosterconceptual conflict, variation in instructional approaches, and accountability from both instructors and students for the learning process. To that end, we offer the DNA of learning metaphor. This metaphor makes explicit effective pedagogical practices and encourages instructors to take a more challenging and possibly transformative approach to their course design and classroom experiences.
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  34.  14
    Eukaryotic DNA topoisomerase IIβ.Caroline A. Austin & Katherine L. Marsh - 1998 - Bioessays 20 (3):215-226.
    Type II DNA topoisomerase activity is required to change DNA topology. It is important in the relaxation of DNA supercoils generated by cellular processes, such as transcription and replication, and it is essential for the condensation of chromosomes and their segregation during mitosis. In mammals this activity is derived from at least two isoforms, termed DNA topoisomerase IIα and β. The α isoform is involved in chromosome condensation and segregation, whereas the role of the β isoform is not yet clear. (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  35.  8
    Harnessing the cooperation between DNA‐PK and cGAS in cancer therapies.Clara Taffoni, Moritz Schüssler, Isabelle K. Vila & Nadine Laguette - 2023 - Bioessays 45 (7):2300045.
    The cyclic GMP‐AMP synthase–stimulator of interferon genes (cGAS‐STING) pathway is central for the initiation of anti‐tumoural immune responses. Enormous effort has been made to optimise the design and administration of STING agonists to stimulate tumour immunogenicity. However, in certain contexts the cGAS‐STING axis fuels tumourigenesis. Here, we review recent findings on the regulation of cGAS expression and activity. We particularly focus our attention on the DNA‐dependent protein kinase (DNA‐PK) complex, that recently emerged as an activator of inflammatory responses in tumour (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  36.  11
    DNA dataveillance: protecting the innocent?Anna Vartapetiance Salmasi & Lee Gillam - 2010 - Journal of Information, Communication and Ethics in Society 8 (3):270-288.
    PurposeThe purpose of this paper is to discuss the UK National DNA Database and some of the controversies surrounding it with reference to legal and ethical issues, focusing particularly on privacy and human rights. Governance of this database involves specific exemptions from the Data Protection Act, and this gives a rise to concerns regarding both the extent of surveillance on the UK population and the possibility for harm to all citizens. This is of wider importance since every current citizen, and (...)
    Direct download (6 more)  
     
    Export citation  
     
    Bookmark  
  37.  4
    Intrinsic DNA bends: an organizer of local chromatin structure for transcription.Takashi Ohyama - 2001 - Bioessays 23 (8):708-715.
    DNA with a curved trajectory of its helix axis is called bent DNA, or curved DNA. Interestingly, biologically important DNA regions often contain this structure, irrespective of the origin of DNA. In the last decade, considerable progress has been made in clarifying one role of bent DNA in prokaryotic transcription and its mechanism of action. However, the role of bent DNA in eukaryotic transcription remains unclear. Our recent study raises the possibility that bent DNA is implicated in the “functional packaging” (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  38.  14
    Eukaryotic DNA topoisomerase IIβ.Richard W. Padgett, Pradeep Das & Srikant Krishna - 1998 - Bioessays 20 (3):215-226.
    Type II DNA topoisomerase activity is required to change DNA topology. It is important in the relaxation of DNA supercoils generated by cellular processes, such as transcription and replication, and it is essential for the condensation of chromosomes and their segregation during mitosis. In mammals this activity is derived from at least two isoforms, termed DNA topoisomerase IIα and β. The α isoform is involved in chromosome condensation and segregation, whereas the role of the β isoform is not yet clear. (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   5 citations  
  39.  6
    From DNA transcription to visible structure: What the development of multicellular animals teaches us.Rosine Chandebois & Jacob Faber - 1987 - Acta Biotheoretica 36 (2):61-119.
    This article is concerned with the problem of the relation between the genetic information contained in the DNA and the emergence of visible structure in multicellular animals. The answer is sought in a reappraisal of the data of experimental embryology, considering molecular, cellular and organismal aspects. The presence of specific molecules only confers a tissue identity on the cells when their concentration exceeds the threshold of differentiation. When this condition is not fulfilled the activity of the genes that code for (...)
    No categories
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  40.  12
    ATP puts the brake on DNA double‐strand break repair.Karl-Peter Hopfner - 2014 - Bioessays 36 (12):1170-1178.
    DNA double‐strand breaks (DSBs) are one of the most deleterious forms of DNA damage and can result in cell inviability or chromosomal aberrations. The Mre11‐Rad50‐Nbs1 (MRN) ATPase‐nuclease complex is a central player in the cellular response to DSBs and is implicated in the sensing and nucleolytic processing of DSBs, as well as in DSB signaling by activating the cell cycle checkpoint kinase ATM. ATP binding to Rad50 switches MRN from an open state with exposed Mre11 nuclease sites to a closed (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark  
  41.  18
    Rethinking the 'Prejudice of Mark': Concepts of Race, Ancestry, and Genetics among Brazilian DNA Test-Takers.Sarah Abel - 2020 - Odeere 5 (10):186-221.
    Sociological accounts usually emphasise the primacy of phenotype (cor, colour) over ancestry for orienting concepts of ‘race’ in Brazil. In this paper, I present an alternative account of the cultural and political significance of ancestry in contemporary Brazil, drawing on qualitative interviews conducted with 50 Brazilians who had recently taken personalised DNA ancestry tests. The interviewees’ attitudes towards their ancestry are interpreted in relation to Brazil’s longstanding national myth of mestiçagem and the history of eugenic Whitening ideologies (ideologias do branqueamento) (...)
    No categories
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  42.  3
    DNA interactions with the nuclear matrix and spatial organization of replication and transcription.S. V. Razin - 1987 - Bioessays 6 (1):19-23.
    Analysis of the DNA sequence associated with the nuclear matrix has made it possible to identify several types of DNA matrix association. Permanent attachment sites are detected in both transcriptionally active and inactive nuclei. Furthermore, replication origins have been shown to be permanently attached to the nuclear matrix. In transcriptionally active nuclei, expressed genes are also associated with the nuclear matrix. Finally, a special group of attachment sites is described; these sites are believed to maintain the fixed positions (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  43.  37
    Functional characterization of three single-nucleotide polymorphisms present in the human APOE promoter sequence: Differential effects in neuronal cells and on DNA-protein interactions.B. Maloney, Y. W. Ge, R. C. Petersen, J. Hardy, J. T. Rogers, J. Perez-Tur & D. K. Lahiri - 2010 - Am J Med Genet B Neuropsychiatr Genet 153:185-201.
    Variations in levels of apolipoprotein E have been tied to the risk and progression of Alzheimer's disease . Our group has previously compared and contrasted the promoters of the mouse and human ApoE gene promoter sequences and found notable similarities and significant differences that suggest the importance of the APOE promoter's role in the human disease. We examine here three specific single-nucleotide polymorphisms within the human APOE promoter region, specifically at -491 , -427 , and at -219 upstream from the (...)
    No categories
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  44.  13
    Joining the PARty: PARP Regulation of KDM5A during DNA Repair (and Transcription?).Anthony Sanchez, Bethany A. Buck-Koehntop & Kyle M. Miller - 2022 - Bioessays 44 (7):2200015.
    The lysine demethylase KDM5A collaborates with PARP1 and the histone variant macroH2A1.2 to modulate chromatin to promote DNA repair. Indeed, KDM5A engages poly(ADP‐ribose) (PAR) chains at damage sites through a previously uncharacterized coiled‐coil domain, a novel binding mode for PAR interactions. While KDM5A is a well‐known transcriptional regulator, its function in DNA repair is only now emerging. Here we review the molecular mechanisms that regulate this PARP1‐macroH2A1.2‐KDM5A axis in DNA damage and consider the potential involvement of this pathway in transcription (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  45.  9
    DNA damage and cell cycle regulation of ribonucleotide reductase.Stephen J. Elledge, Zheng Zhou, James B. Allen & Tony A. Navas - 1993 - Bioessays 15 (5):333-339.
    Ribonucleotide reductase (RNR) catalyzes the rate limiting step in the production of deoxyribonucleotides needed for DNA synthesis. In addition to the well documented allosteric regulation, the synthesis of the enzyme is also tightly regulated at the level of transcription. mRNAs for both subunits are cell cycle regulated and inducible by DNA damage in all organisms examined, including E. coli, S. cerevisiae and H. sapiens. This DNA damage regulation is thought to provide a metabolic state that facilitates DNA replicational repair processes. (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  46.  6
    DNA filter elution: A window on DNA damage in mammalian cells.Kurt W. Kohn - 1996 - Bioessays 18 (6):505-513.
    This personal account traces a series of studies that led from DNA physical chemistry to anticancer drug mechanisms. Chemical crosslinking as a basis for anticancer drug actions had been suspected since the time of the first clinical reports of the effectiveness of nitrogen mustard in 1946. After the elucidation of the DNA helix‐coil transition, several nearly concurrent findings in the early 1960s established the paradigm of DNA interstrand crosslinking. The DNA filter elution phenomenon was discovered in the early 1970s, and (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  47.  5
    DNA synthesis control in yeast: An evolutionarily conserved mechanism for regulating DNA synthesis genes?Gary F. Merrill, Brian A. Morgan, Noel F. Lowndes & Leland H. Johnston - 1992 - Bioessays 14 (12):823-830.
    After yeast cells commit to the cell cycle in a process called START, genes required for DNA synthesis are expressed in late G1. Periodicity is mediated by a hexameric sequence, known as a MCB element, present in all DNA synthesis gene promoters. A complex that specifically binds MCBs has been identified. One polypeptide in the MCB complex is Swi6, a transcription factor that together with Swi4 also binds G1 cyclin promoters and participates in a positive feedback loop at START. The (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  48.  1
    DNA topoisomerase dysfunction: A new goal for antitumor chemotherapy.Paul J. Smith - 1990 - Bioessays 12 (4):167-172.
    Topoisomerase enzymes – found in prokaryotes to human cells – control conformational changes in DNA and aid the orderly progression of DNA replication, gene transcription and the separation of daughter chromosomes at cell division. Several classes of anti‐cancer drugs are now recognised as topoisomerase poisons because of their ability to trap topoisomerase molecules on DNA as ‘cleavable complexes’. Understanding how drugs generate such complexes and why they are toxic to actively growing cancer cells is a major challenge for the development (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  49.  2
    DNA precursor asymmetries, replication fidelity, and variable genome evolution.Christopher K. Mathews & Jiuping Ji - 1992 - Bioessays 14 (5):295-301.
    Balanced pools of deoxyribonucleoside triphosphates (dNTPs) are essential for DNA replication to occur with maximum fidelity. Conditions that create biased dNTP pools stimulate mutagenesis, as well as other phenomena, such as recombination or cell death. In this essay we consider the effective dNTP concentrations at replication sites under normal conditions, and we ask how maintenance of these levels contributes toward the natural fidelity of DNA replication. We focus upon two questions. (1) In prokaryotic systems, evidence suggests that replication is driven (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  50.  4
    Accessing DNA damage in chromatin: Insights from transcription.Maria Meijer & Michael J. Smerdon - 1999 - Bioessays 21 (7):596-603.
    Recently, there has been a convergence of fields studying the processing of DNA, such as transcription, replication, and repair. This convergence has been centered around the packaging of DNA in chromatin. Chromatin structure affects all aspects of DNA processing because it modulates access of proteins to DNA. Therefore, a central theme has become the mechanism(s) for accessing DNA in chromatin. It seems likely that mechanisms involved in one of these processes may also be used in others. For example, the discovery (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
1 — 50 / 998