Switch to: Citations

Add references

You must login to add references.
  1. On the reality of space-time geometry and the wavefunction.Jeeva Anandan & Harvey R. Brown - 1995 - Foundations of Physics 25 (2):349--60.
    The action-reaction principle (AR) is examined in three contexts: (1) the inertial-gravitational interaction between a particle and space-time geometry, (2) protective observation of an extended wave function of a single particle, and (3) the causal-stochastic or Bohm interpretation of quantum mechanics. A new criterion of reality is formulated using the AR principle. This criterion implies that the wave function of a single particle is real and justifies in the Bohm interpretation the dual ontology of the particle and its associated wave (...)
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark   30 citations  
  • On the Common Structure of Bohmian Mechanics and the Ghirardi–Rimini–Weber Theory Dedicated to GianCarlo Ghirardi on the occasion of his 70th birthday.Valia Allori, Sheldon Goldstein, Roderich Tumulka & Nino Zanghì - 2008 - British Journal for the Philosophy of Science 59 (3):353 - 389.
    Bohmian mechanics and the Ghirardi-Rimini-Weber theory provide opposite resolutions of the quantum measurement problem: the former postulates additional variables (the particle positions) besides the wave function, whereas the latter implements spontaneous collapses of the wave function by a nonlinear and stochastic modification of Schrödinger's equation. Still, both theories, when understood appropriately, share the following structure: They are ultimately not about wave functions but about 'matter' moving in space, represented by either particle trajectories, fields on space-time, or a discrete set of (...)
    Direct download (15 more)  
     
    Export citation  
     
    Bookmark   118 citations  
  • Quantum Mechanics and Experience.David Z. Albert - 1992 - Harvard Up.
    Presents a guide to the basics of quantum mechanics and measurement.
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   261 citations  
  • Review: Q uantum Mechanics and Experience. [REVIEW]Lawrence Sklar - 1996 - Philosophy and Phenomenological Research 56 (4):973-975.
  • Interpreting the many-worlds interpretation.David Albert & Barry Loewer - 1988 - Synthese 77 (November):195-213.
  • The meaning of protective measurements.Yakir Aharonov, Jeeva Anandan & Lev Vaidman - 1996 - Foundations of Physics 26 (1):117-126.
    Protective measurement, which we have introduced recently, allows one to observe properties of the state of a single quantum system and even the Schrödinger wave itself. These measurements require a protection, sometimes due to an additional procedure and sometimes due to the potential of the system itself The analysis of the protective measurements is presented and it is argued, contrary to recent claims, that they observe the quantum state and not the protective potential. Some other misunderstandings concerning our proposal are (...)
    Direct download (7 more)  
     
    Export citation  
     
    Bookmark   30 citations  
  • Quantum Mechanics and Experience.[author unknown] - 1994 - Erkenntnis 40 (3):403-406.
    No categories
     
    Export citation  
     
    Bookmark   57 citations  
  • The principles of quantum mechanics.Paul Adrien Maurice Dirac - 1930 - Oxford,: Clarendon Press.
    THE PRINCIPLE OF SUPERPOSITION. The need for a quantum theory Classical mechanics has been developed continuously from the time of Newton and applied to an ...
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   261 citations  
  • Quantum Mechanics on Spacetime I: Spacetime State Realism.David Wallace & Christopher Gordon Timpson - 2010 - British Journal for the Philosophy of Science 61 (4):697-727.
    What ontology does realism about the quantum state suggest? The main extant view in contemporary philosophy of physics is wave-function realism . We elaborate the sense in which wave-function realism does provide an ontological picture, and defend it from certain objections that have been raised against it. However, there are good reasons to be dissatisfied with wave-function realism, as we go on to elaborate. This motivates the development of an opposing picture: what we call spacetime state realism , a view (...)
    Direct download (14 more)  
     
    Export citation  
     
    Bookmark   109 citations  
  • Everett and structure.David Wallace - 2003 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 34 (1):87-105.
    I address the problem of indefiniteness in quantum mechanics: the problem that the theory, without changes to its formalism, seems to predict that macroscopic quantities have no definite values. The Everett interpretation is often criticised along these lines, and I shall argue that much of this criticism rests on a false dichotomy: that the macroworld must either be written directly into the formalism or be regarded as somehow illusory. By means of analogy with other areas of physics, I develop the (...)
    Direct download (9 more)  
     
    Export citation  
     
    Bookmark   128 citations  
  • In Defense of the Existence of States of Motion.Michael Tooley - 1988 - Philosophical Topics 16 (1):225-254.
    No categories
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   79 citations  
  • In Defense of the Existence of States of Motion.Michael Tooley - 1988 - Philosophical Topics 16 (1):225-254.
    No categories
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   53 citations  
  • Quantum propensities.Mauricio Suárez - 2007 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 38 (2):418-438.
    This paper reviews four attempts throughout the history of quantum mechanics to explicitly employ dispositional notions in order to solve the quantum paradoxes, namely: Margenau's latencies, Heisenberg's potentialities, Maxwell's propensitons, and the recent selective propensities interpretation of quantum mechanics. Difficulties and challenges are raised for all of them, and it is concluded that the selective propensities approach nicely encompasses the virtues of its predecessors. Finally, some strategies are discussed for reading similar dispositional notions into two other well-known interpretations of quantum (...)
    Direct download (9 more)  
     
    Export citation  
     
    Bookmark   52 citations  
  • “Forget time”: Essay written for the FQXi contest on the Nature of Time.Carlo Rovelli - 2011 - Foundations of Physics 41 (9):1475-1490.
    Following a line of research that I have developed for several years, I argue that the best strategy for understanding quantum gravity is to build a picture of the physical world where the notion of time plays no role at all. I summarize here this point of view, explaining why I think that in a fundamental description of nature we must “forget time”, and how this can be done in the classical and in the quantum theory. The idea is to (...)
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark   41 citations  
  • Wavefunction Collapse and Conservation Laws.Philip Pearle - 2000 - Foundations of Physics 30 (8):1145-1160.
    It is emphasized that the collapse postulate of standard quantum theory can violate conservation of energy-momentum and there is no indication from where the energy-momentum comes or to where it goes. Likewise, in the Continuous Spontaneous Localization (CSL) dynamical collapse model, particles gain energy on average. In CSL, the usual Schrödinger dynamics is altered so that a randomly fluctuating classical field interacts with quantized particles to cause wavefunction collapse. In this paper it is shown how to define energy for the (...)
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark   9 citations  
  • Gravity, energy conservation, and parameter values in collapse models.Philip Pearle & Euan Squires - 1996 - Foundations of Physics 26 (3):291-305.
    We interpret the probability rule of the CSL collapse theory to mean to mean that the scalar field which causes collapse is the gravitational curvature scalar with two sources, the expectation value of the mass density (smeared over the GRW scale a) and a white noise fluctuating source. We examine two models of the fluctuating source, monopole fluctuations and dipole fluctuations, and show that these correspond to two well-known CSL models. We relate the two GRW parameters of CSL to fundamental (...)
    Direct download (6 more)  
     
    Export citation  
     
    Bookmark   8 citations  
  • Wave Function Ontology.Bradley Monton - 2002 - Synthese 130 (2):265-277.
    I argue that the wave function ontology for quantum mechanics is an undesirable ontology. This ontology holds that the fundamental space in which entities evolve is not three-dimensional, but instead 3N-dimensional, where N is the number of particles standardly thought to exist in three-dimensional space. I show that the state of three-dimensional objects does not supervene on the state of objects in 3N-dimensional space. I also show that the only way to guarantee the existence of the appropriate mental states in (...)
    Direct download (7 more)  
     
    Export citation  
     
    Bookmark   61 citations  
  • Life in configuration space.Peter J. Lewis - 2004 - British Journal for the Philosophy of Science 55 (4):713-729.
    This paper investigates the tenability of wavefunction realism, according to which the quantum mechanical wavefunction is not just a convenient predictive tool, but is a real entity figuring in physical explanations of our measurement results. An apparent difficulty with this position is that the wavefunction exists in a many-dimensional configuration space, whereas the world appears to us to be three-dimensional. I consider the arguments that have been given for and against the tenability of wavefunction realism, and note that both the (...)
    Direct download (10 more)  
     
    Export citation  
     
    Bookmark   60 citations  
  • Quantum dynamical reduction and reality: Replacing probability densities with densities in real space. [REVIEW]Giancarlo Ghirardi - 1996 - Erkenntnis 45 (2-3):349 - 365.
    Consideration is given to recent attempts to solve the objectification problem of quantum mechanics by considering nonlinear and stochastic modifications of Schrödinger's evolution equation. Such theories agree with all predictions of standard quantum mechanics concerning microsystems but forbid the occurrence of superpositions of macroscopically different states. It is shown that the appropriate interpretation for such theories is obtained by replacing the probability densities of standard quantum mechanics with mass densities in real space. Criteria allowing a precise characterization of the idea (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   10 citations  
  • Describing the macroscopic world: Closing the circle within the dynamical reduction program. [REVIEW]G. C. Ghirardi, R. Grassi & F. Benatti - 1995 - Foundations of Physics 25 (1):5-38.
    With reference to recently proposed theoretical models accounting for reduction in terms of a unified dynamics governing all physical processes, we analyze the problem of working out a worldview accommodating our knowledge about natural phenomena. We stress the relevant conceptual differences between the considered models and standard quantum mechanics. In spite of the fact that both theories describe systems within a genuine Hilbert space framework, the peculiar features of the spontaneous reduction models limit drastically the states which are dynamically stable. (...)
    Direct download (6 more)  
     
    Export citation  
     
    Bookmark   118 citations  
  • Probability in GRW theory.Roman Frigg & Carl Hoefer - 2007 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 38 (2):371-389.
    GRW Theory postulates a stochastic mechanism assuring that every so often the wave function of a quantum system is `hit', which leaves it in a localised state. How are we to interpret the probabilities built into this mechanism? GRW theory is a firmly realist proposal and it is therefore clear that these probabilities are objective probabilities (i.e. chances). A discussion of the major theories of chance leads us to the conclusion that GRW probabilities can be understood only as either single (...)
    Direct download (12 more)  
     
    Export citation  
     
    Bookmark   27 citations  
  • The Character of Physical Law.Alex C. Michalos - 1967 - Philosophy of Science 34 (2):194-194.
  • The Character of Physical Law.Richard Feynman - 1965 - MIT Press.
    The law of gravitation, an example of physical law The relation of mathematics to physics The great conservation principles Symmetry in physical law The distinction of past and future Probability and uncertainty: the quantum mechanical view of nature Seeking new laws.
  • An empirical reply to empiricism: Protective measurement opens the door for quantum realism.Michael Dickson - 1995 - Philosophy of Science 62 (1):122-140.
    Quantum mechanics has sometimes been taken to be an empiricist (vs. realist) theory. I state the empiricist's argument, then outline a recently noticed type of measurement--protective measurement--that affords a good reply for the realist. This paper is a reply to scientific empiricism (about quantum mechanics), but is neither a refutation of that position, nor an argument in favor of scientific realism. Rather, my aim is to place realism and empiricism on an even score in regards to quantum theory.
    Direct download (7 more)  
     
    Export citation  
     
    Bookmark   19 citations  
  • Naive realism about operators.Martin Daumer, Detlef Dürr, Sheldon Goldstein & Nino Zanghì - 1996 - Erkenntnis 45 (2-3):379 - 397.
    A source of much difficulty and confusion in the interpretation of quantum mechanics is a naive realism about operators. By this we refer to various ways of taking too seriously the notion of operator-as-observable, and in particular to the all too casual talk about measuring operators that occurs when the subject is quantum mechanics. Without a specification of what should be meant by measuring a quantum observable, such an expression can have no clear meaning. A definite specification is provided by (...)
    Direct download (6 more)  
     
    Export citation  
     
    Bookmark   38 citations  
  • Bohm particles and their detection in the light of neutron interferometry.H. R. Brown, C. Dewdney & G. Horton - 1995 - Foundations of Physics 25 (2):329-347.
    Properties sometimes attributed to the “particle” aspect of a neutron, e.g., mass and magnetic moment, cannot straightforwardly be regarded in the Bohm interpretation of quantum mechanics as localized at the hypothetical position of the particle. This is shown by examining a series of effects in neutron interferometry. A related thought-experiment also provides a variation of a recent demonstration that which-way detectors can appear to behave anomolously in the Bohm theory.
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   34 citations  
  • Quantum Mechanics and 3 N - Dimensional Space.Bradley Monton - 2006 - Philosophy of Science 73 (5):778-789.
    I maintain that quantum mechanics is fundamentally about a system of N particles evolving in three-dimensional space, not the wave function evolving in 3N-dimensional space.
    Direct download (13 more)  
     
    Export citation  
     
    Bookmark   65 citations  
  • Nonquantum Gravity.Stephen Boughn - 2009 - Foundations of Physics 39 (4):331-351.
    One of the great challenges for 21st century physics is to quantize gravity and generate a theory that will unify gravity with the other three fundamental forces of nature. This paper takes the (heretical) point of view that gravity may be an inherently classical, i.e., nonquantum, phenomenon and investigates the experimental consequences of such a conjecture. At present there is no experimental evidence of the quantum nature of gravity and the likelihood of definitive tests in the future is not at (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   3 citations  
  • The Undivided Universe: An Ontological Interpretation of Quantum Theory.D. Bohm, B. J. Hiley & J. S. Bell - 1993 - Synthese 107 (1):145-165.
    No categories
    Direct download  
     
    Export citation  
     
    Bookmark   232 citations  
  • Quantum states for primitive ontologists: A case study.Gordon Belot - 2012 - European Journal for Philosophy of Science 2 (1):67-83.
    Under so-called primitive ontology approaches, in fully describing the history of a quantum system, one thereby attributes interesting properties to regions of spacetime. Primitive ontology approaches, which include some varieties of Bohmian mechanics and spontaneous collapse theories, are interesting in part because they hold out the hope that it should not be too difficult to make a connection between models of quantum mechanics and descriptions of histories of ordinary macroscopic bodies. But such approaches are dualistic, positing a quantum state as (...)
    Direct download (6 more)  
     
    Export citation  
     
    Bookmark   75 citations  
  • Formalism, ontology and methodology in Bohmian mechanics.Darrin W. Belousek - 2003 - Foundations of Science 8 (2):109-172.
    The relationship between mathematical formalism, physical interpretation and epistemological appraisal in the practice of physical theorizing is considered in the context of Bohmian mechanics. After laying outthe formal mathematical postulates of thetheory and recovering the historical roots ofthe present debate over the meaning of Bohmianmechanics from the early debate over themeaning of Schrödinger's wave mechanics,several contemporary interpretations of Bohmianmechanics in the literature are discussed andcritiqued with respect to the aim of causalexplanation and an alternative interpretationis proposed. Throughout, the over-arching aimis (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   31 citations  
  • Relativistic State Reduction Dynamics.Daniel J. Bedingham - 2011 - Foundations of Physics 41 (4):686-704.
    A mechanism describing state reduction dynamics in relativistic quantum field theory is outlined. The mechanism involves nonlinear stochastic modifications to the standard description of unitary state evolution and the introduction of a relativistic field in which a quantized degree of freedom is associated to each point in spacetime. The purpose of this field is to mediate in the interaction between classical stochastic influences and conventional quantum fields. The equations of motion are Lorentz covariant, frame independent, and do not result in (...)
    Direct download (6 more)  
     
    Export citation  
     
    Bookmark   19 citations  
  • The Quantum Mechanics of Minds and Worlds.Lon Becker - 2001 - Philosophical Review 110 (3):482.
    There has been a lot of interest over the last fifteen years or so in no-collapse interpretations of quantum mechanics. The Bohm interpretation of quantum mechanics has received several thorough accounts, perhaps most notably by Bohm himself.
    Direct download (6 more)  
     
    Export citation  
     
    Bookmark   55 citations  
  • The Quantum Mechanics of Minds and Worlds.Jeffrey Alan Barrett - 1999 - Oxford, GB: Oxford University Press.
    Jeffrey Barrett presents the most comprehensive study yet of a problem that has puzzled physicists and philosophers since the 1930s.
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   131 citations  
  • The undivided universe: an ontological interpretation of quantum theory.David Bohm - 1993 - New York: Routledge. Edited by B. J. Hiley.
    In the The Undivided Universe, David Bohn and Basil Hiley present a radically different approach to quantum theory.
    Direct download  
     
    Export citation  
     
    Bookmark   209 citations  
  • Schrödinger, Life and Thought.Walter John Moore - 1989 - Cambridge University Press.
    In the first comprehensive biography of Erwin Schrödinger--a brilliant and charming Austrian, a great scientist, and a man with a passionate interest in people and ideas--the author draws upon recollections of Schrödinger's friends, family and colleagues, and on contemporary records, letters and diaries. Schrödinger led a very intense life, both in his research and in the personal realm. This book portrays his life against the backdrop of Europe at a time of change and unrest. His best known scientific work was (...)
    Direct download  
     
    Export citation  
     
    Bookmark   19 citations  
  • Many Worlds?: Everett, Quantum Theory, & Reality.Simon Saunders, Jonathan Barrett, Adrian Kent & David Wallace (eds.) - 2010 - Oxford, GB: Oxford University Press UK.
    What would it mean to apply quantum theory, without restriction and without involving any notion of measurement and state reduction, to the whole universe? What would realism about the quantum state then imply? This book brings together an illustrious team of philosophers and physicists to debate these questions. The contributors broadly agree on the need, or aspiration, for a realist theory that unites micro- and macro-worlds. But they disagree on what this implies. Some argue that if unitary quantum evolution has (...)
    Direct download  
     
    Export citation  
     
    Bookmark   96 citations  
  • God does play dice with the universe: a startling new picture of the world Einstein could not believe but you can understand.Shan Gao - 2008 - Bury St. Edmunds, Suffolk: Arima.
    Science has made a mighty advance since it originated in ancient Greece more than 2500 years ago. Yet we still live in Plato's cave today; we think everything around us moves continuously, but continuous motion is merely a shadow of real motion. This book will lead you to walk out the cave along a logical and comprehensible road. After passing Zeno's arrow, Newton's inertia, Einstein's light, and Schrodinger's cat, you will reach the real world, where every thing in the universe, (...)
    Direct download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Quantum theory at the crossroads: reconsidering the 1927 Solvay conference.Guido Bacciagaluppi - 2007 - New York: Cambridge University Press. Edited by Antony Valentini.
    The 1927 Solvay conference was perhaps the most important meeting in the history of quantum theory. Contrary to popular belief, the interpretation of quantum theory was not settled at this conference, and no consensus was reached. Instead, a range of sharply conflicting views were presented and extensively discussed, including de Broglie's pilot-wave theory, Born and Heisenberg's quantum mechanics, and Schrödinger's wave mechanics. Today, there is no longer an established or dominant interpretation of quantum theory, so it is important to re-evaluate (...)
  • Elementary Quantum Metaphysics.David Albert - 1996 - In J. T. Cushing, Arthur Fine & Sheldon Goldstein (eds.), Bohmian Mechanics and Quantum theory: An Appraisal. Kluwer Academic Publishers. pp. 277-284.
    Once upon a time, the twentieth-century investigations of the behaviors of sub-atomic particles were thought to have established that there can be no such thing as an objective, observer-independent, scientifically realist, empirically adequate picture of the physical world.
    Direct download  
     
    Export citation  
     
    Bookmark   196 citations  
  • The role of decoherence in quantum mechanics.Guido Bacciagaluppi - 2003 - Stanford Encyclopedia of Philosophy.
    Interference phenomena are a well-known and crucial feature of quantum mechanics, the two-slit experiment providing a standard example. There are situations, however, in which interference effects are (artificially or spontaneously) suppressed. We shall need to make precise what this means, but the theory of decoherence is the study of (spontaneous) interactions between a system and its environment that lead to such suppression of interference. This study includes detailed modelling of system-environment interactions, derivation of equations (‘master equations’) for the (reduced) state (...)
    Direct download  
     
    Export citation  
     
    Bookmark   75 citations  
  • A Model of Wavefunction Collapse in Discrete Space-Time.Shan Gao - 2006 - International Journal of Theoretical Physics 45 (10):1965-1979.
    We give a new argument supporting a gravitational role in quantum collapse. It is demonstrated that the discreteness of space-time, which results from the proper combination of quantum theory and general relativity, may inevitably result in the dynamical collapse of thewave function. Moreover, the minimum size of discrete space-time yields a plausible collapse criterion consistent with experiments. By assuming that the source to collapse the wave function is the inherent random motion of particles described by the wave function, we further (...)
    Direct download  
     
    Export citation  
     
    Bookmark   10 citations  
  • Against ”Measurement'.J. S. Bell - 2004 - In Speakable and Unspeakable in Quantum Mechanics. Cambridge University Press. pp. 213--231.
  • Zur Quantenmechanik der Stoßvorgänge.Max Born - 1926 - Zeitschrift für Physik 37 (12):863-867.
    Durch eine Untersuchung der Stoßvorgänge wird die Auffassung entwickelt, daß die Quantenmechanik in der Schrödingerschen Form nicht nur die stationären Zustände, sondern auch die Quantensprünge zu beschreiben gestattet.
     
    Export citation  
     
    Bookmark   109 citations  
  • Quantum Non-Locality and Relativity: Metaphysical Intimations of Modern Physics.Tim Maudlin - 1997 - Philosophical Quarterly 47 (186):118-120.
    No categories
     
    Export citation  
     
    Bookmark   44 citations  
  • Beables for quantum field theory.J. S. Bell - 1987 - In Basil J. Hiley & D. Peat (eds.), Quantum Implications: Essays in Honour of David Bohm. Methuen. pp. 227--234.
  • A Suggested Interpretation of the Quantum Theory in Terms of ‘Hidden’ Variables, I and II.David Bohm - 1952 - Physical Review (85):166-193.
  • Reconstructing reality: Environment-induced decoherence, the measurement problem, and the emergence of definiteness in quantum mechanics.Hanneke Janssen - unknown
    This work is a critique of the program of "environment-induced decoherence" as advocated by Zurek, Zeh and Joos, among others. In particular, the alleged relevance of decoherence for a solution of the "measurement problem" is subjected to a detailed philosophical analysis. In the first chapter, an attempt is made to unravel what exactly this "measurement problem" amounts to for the decoherence theorists. The second chapter reviews the standard decoherence literature. The third chapter starts with a brief discussion of the philosophical (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   16 citations  
  • Many Worlds: an introduction.Simon Saunders - unknown
    This is a self-contained introduction to the Everett interpretation of quantum mechanics. It is the introductory chapter of Many Worlds? Everett, quantum theory, and reality, S. Saunders, J. Barrett, A. Kent, and D. Wallace, Oxford University Press.
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   59 citations  
  • Unified dynamics for microscopic and macroscopic systems.GianCarlo Ghirardi, Alberto Rimini & Tullio Weber - 1986 - Physical Review D 34 (D):470–491.