Switch to: References

Citations of:

Nonquantum Gravity

Foundations of Physics 39 (4):331-351 (2009)

Add citations

You must login to add citations.
  1. The meaning of the wave function: in search of the ontology of quantum mechanics.Shan Gao - 2017 - New York, NY, USA: Cambridge University Press.
    The meaning of the wave function has been a hot topic of debate since the early days of quantum mechanics. Recent years have witnessed a growing interest in this long-standing question. Is the wave function ontic, directly representing a state of reality, or epistemic, merely representing a state of knowledge, or something else? If the wave function is not ontic, then what, if any, is the underlying state of reality? If the wave function is indeed ontic, then exactly what physical (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   22 citations  
  • Quantum Non-Gravity and Stellar Collapse.C. Barceló, L. J. Garay & G. Jannes - 2011 - Foundations of Physics 41 (9):1532-1541.
    Observational indications combined with analyses of analogue and emergent gravity in condensed matter systems support the possibility that there might be two distinct energy scales related to quantum gravity: the scale that sets the onset of quantum gravitational effects $E_{\rm B}$ (related to the Planck scale) and the much higher scale $E_{\rm L}$ signalling the breaking of Lorentz symmetry. We suggest a natural interpretation for these two scales: $E_{\rm L}$ is the energy scale below which a special relativistic spacetime emerges, (...)
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  • Interpreting Quantum Mechanics in Terms of Random Discontinuous Motion of Particles.Shan Gao - unknown
    This thesis is an attempt to reconstruct the conceptual foundations of quantum mechanics. First, we argue that the wave function in quantum mechanics is a description of random discontinuous motion of particles, and the modulus square of the wave function gives the probability density of the particles being in certain locations in space. Next, we show that the linear non-relativistic evolution of the wave function of an isolated system obeys the free Schrödinger equation due to the requirements of spacetime translation (...)
    Direct download (6 more)  
     
    Export citation  
     
    Bookmark   23 citations