Switch to: References

Add citations

You must login to add citations.
  1. The meaning of the wave function: in search of the ontology of quantum mechanics.Shan Gao - 2017 - New York, NY, USA: Cambridge University Press.
    The meaning of the wave function has been a hot topic of debate since the early days of quantum mechanics. Recent years have witnessed a growing interest in this long-standing question. Is the wave function ontic, directly representing a state of reality, or epistemic, merely representing a state of knowledge, or something else? If the wave function is not ontic, then what, if any, is the underlying state of reality? If the wave function is indeed ontic, then exactly what physical (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   22 citations  
  • Why Quantize Gravity (or Any Other Field for That Matter)?Nick Huggett & Craig Callender - 2001 - Philosophy of Science 68 (S3):S382-S394.
    The quantum gravity program seeks a theory that handles quantum matter fields and gravity consistently. But is such a theory really required and must it involve quantizing the gravitational field? We give reasons for a positive answer to the first question, but dispute a widespread contention that it is inconsistent for the gravitational field to be classical while matter is quantum. In particular, we show how a popular argument falls short of a no-go theorem, and discuss possible counterexamples. Important issues (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   10 citations  
  • Does gravity induce wavefunction collapse? An examination of Penrose's conjecture.Shan Gao - 2013 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 44 (2):148-151.
    According to Penrose, the fundamental conflict between the superposition principle of quantum mechanics and the principle of general covariance of general relativity entails the existence of wavefunction collapse, e.g. a quantum superposition of two different space–time geometries will collapse to one of them due to the ill-definedness of the time-translation operator for the superposition. In this paper, we argue that Penrose's conjecture on gravity's role in wavefunction collapse is debatable. First of all, it is still a controversial issue what the (...)
    Direct download (7 more)  
     
    Export citation  
     
    Bookmark   3 citations  
  • Existence of macroscopic spatial superpositions in collapse theories.Shan Gao - 2021 - Studies in History and Philosophy of Science Part A 86 (C):1-5.
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  • Copenhagen Quantum Mechanics Emerges from a Deterministic Schrödinger Theory in 11 Dimensional Spacetime Including Weak Field Gravitation.G. Doyen & D. Drakova - 2015 - Foundations of Physics 45 (8):959-999.
    We construct a world model consisting of a matter field living in 4 dimensional spacetime and a gravitational field living in 11 dimensional spacetime. The seven hidden dimensions are compactified within a radius estimated by reproducing the particle–wave characteristics of diffraction experiments. In the presence of matter fields the gravitational field develops localized modes with elementary excitations called gravonons which are induced by the sources. The final world model treated here contains only gravonons and a scalar matter field. The gravonons (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark  
  • The computable universe: from prespace metaphysics to discrete quantum mechanics.Martin Leckey - 1997 - Dissertation, Monash University
    The central motivating idea behind the development of this work is the concept of prespace, a hypothetical structure that is postulated by some physicists to underlie the fabric of space or space-time. I consider how such a structure could relate to space and space-time, and the rest of reality as we know it, and the implications of the existence of this structure for quantum theory. Understanding how this structure could relate to space and to the rest of reality requires, I (...)
    Direct download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Interpreting Quantum Mechanics in Terms of Random Discontinuous Motion of Particles.Shan Gao - unknown
    This thesis is an attempt to reconstruct the conceptual foundations of quantum mechanics. First, we argue that the wave function in quantum mechanics is a description of random discontinuous motion of particles, and the modulus square of the wave function gives the probability density of the particles being in certain locations in space. Next, we show that the linear non-relativistic evolution of the wave function of an isolated system obeys the free Schrödinger equation due to the requirements of spacetime translation (...)
    Direct download (6 more)  
     
    Export citation  
     
    Bookmark   23 citations  
  • The Wave Function and Its Evolution.Shan Gao - 2011
    The meaning of the wave function and its evolution are investigated. First, we argue that the wave function in quantum mechanics is a description of random discontinuous motion of particles, and the modulus square of the wave function gives the probability density of the particles being in certain locations in space. Next, we show that the linear non-relativistic evolution of the wave function of an isolated system obeys the free Schrödinger equation due to the requirements of spacetime translation invariance and (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark