Results for 'endoplasmic reticulum'

51 found
Order:
  1.  9
    Are endoplasmic reticulum subdomains shaped by asymmetric distribution of phospholipids? Evidence from a C. elegans model system.Zhe Cao, Xiaowei Wang, Xuhui Huang & Ho Yi Mak - 2021 - Bioessays 43 (1):2000199.
    Physical contact between organelles are widespread, in part to facilitate the shuttling of protein and lipid cargoes for cellular homeostasis. How do protein‐protein and protein‐lipid interactions shape organelle subdomains that constitute contact sites? The endoplasmic reticulum (ER) forms extensive contacts with multiple organelles, including lipid droplets (LDs) that are central to cellular fat storage and mobilization. Here, we focus on ER‐LD contacts that are highlighted by the conserved protein seipin, which promotes LD biogenesis and expansion. Seipin is enriched (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  2.  18
    The endoplasmic reticulum and calcium storage.Gordon L. E. Koch - 1990 - Bioessays 12 (11):527-531.
    Calcium storage is one of the functions commonly attributed to the endoplasmic reticulum (ER) in non‐muscle cells. Several recent studies have added support to this concept. Analysis of reticuloplasm, the luminal ER content, has shown that it contains several proteins (reticuloplasmins) which are prospective calcium storage proteins. One of these, calreticulin, is also present in the sarcoplasmic reticulum (SR). In sea urchin eggs, a calsequestrin‐like protein has been clearly localised to the ER. The recent demonstration that the (...)
    No categories
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  3.  7
    Microtubules as key coordinators of nuclear envelope and endoplasmic reticulum dynamics during mitosis.Anne-Lore Schlaitz - 2014 - Bioessays 36 (7):665-671.
    During mitosis, cells comprehensively restructure their interior to promote the faithful inheritance of DNA and cytoplasmic contents. In metazoans, this restructuring entails disassembly of the nuclear envelope, redistribution of its components into the endoplasmic reticulum (ER) and eventually nuclear envelope reassembly around the segregated chromosomes. The microtubule cytoskeleton has recently emerged as a critical regulator of mitotic nuclear envelope and ER dynamics. Microtubules and associated molecular motors tear open the nuclear envelope in prophase and remove nuclear envelope remnants (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  4.  6
    Structural basis of the conformational and functional regulation of human SERCA2b, the ubiquitous endoplasmic reticulum calcium pump.Yuxia Zhang & Kenji Inaba - 2022 - Bioessays 44 (7):2200052.
    Sarco/endoplasmic reticulum Ca2+ ATPase 2b (SERCA2b), a member of the SERCA family, is expressed ubiquitously and transports Ca2+ into the sarco/endoplasmic reticulum using the energy provided by ATP binding and hydrolysis. The crystal structure of SERCA2b in its Ca2+‐ and ATP‐bound (E1∙2Ca2+‐ATP) state and cryo‐electron microscopy (cryo‐EM) structures of the protein in its E1∙2Ca2+‐ATP and Ca2+‐unbound phosphorylated (E2P) states have provided essential insights into how the overall conformation and ATPase activity of SERCA2b is regulated by the (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  5.  7
    Assembly, sorting, and exit of oligomeric proteins from the endoplasmic reticulum.Padmalatha S. Reddy & Ronald B. Corley - 1998 - Bioessays 20 (7):546-554.
    The endoplasmic reticulum (ER) uses various mechanisms to ensure that only properly folded proteins enter the secretory pathway. For proteins that oligomerize in the ER, the proper tertiary and quaternary structures must be achieved before their release. Although some proteins fold before oligomerization, others initiate oligomerization cotranslationally. Here, we discuss these different strategies and some of the unique problems they present for the ER quality control system. One mechanism used by the ER is thiol retention. Thiol retention operates (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  6.  4
    Endocrine communication of endoplasmic reticulum stress.Alba Mena Gómez & Alexander Bartelt - 2023 - Bioessays 45 (8):2300093.
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  7.  16
    Molecular machinery required for protein transport from the endoplasmic reticulum to the golgi complex.Linda Hicke & Randy Schekman - 1990 - Bioessays 12 (6):253-258.
    The cellular machinery responsible for conveying proteins between the endoplasmic reticulum and the Golgi is being investigated using genetics and biochemistry. A role for vesicles in mediating protein traffic between the ER and the Golgi has been established by characterizing yeast mutants defective in this process, and by using recently developed cell‐free assays that measure ER to Golgi transport. These tools have also allowed the identification of several proteins crucial to intracellular protein trafficking. The characterization and possible functions (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  8.  6
    Membrane protein insertion into the endoplasmic reticulum ‐ another channel tunnel?Stephen High - 1992 - Bioessays 14 (8):535-540.
    The synthesis of biological membranes requires the insertion of proteins into a lipid bilayer. The rough endoplasmic reticulum of eukaryotic cells is a principal site of membrane biogenesis. The insertion of proteins into the membrane of the endoplasmic reticulum is mediated by a resident proteinaceous machinery. Over the last five years several different experimental approaches have provided information about the components of the machinery and how it may function.
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  9.  10
    Evolving questions and paradigm shifts in endoplasmicreticulum‐associated degradation (ERAD).Ardythe A. McCracken & Jeffrey L. Brodsky - 2003 - Bioessays 25 (9):868-877.
    ER‐associated degradation (ERAD) is a component of the protein quality control system, ensuring that aberrant polypeptides cannot transit through the secretory pathway. This is accomplished by a complex sequence of events in which unwanted proteins are selected in the ER and exported to the cytosol for degradation by the proteasome. Given that protein quality control can be essential for cell survival, it is not surprising that ERAD is linked to numerous disease states. Here we review the molecular mechanisms of ERAD, (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  10.  8
    Linking the unfolded protein response to bioactive lipid metabolism and signalling in the cell non‐autonomous extracellular communication of ER stress.Nicole T. Watt, Anna McGrane & Lee D. Roberts - 2023 - Bioessays 45 (8):2300029.
    The endoplasmic reticulum (ER) organelle is the key intracellular site of both protein and lipid biosynthesis. ER dysfunction, termed ER stress, can result in protein accretion within the ER and cell death; a pathophysiological process contributing to a range of metabolic diseases and cancers. ER stress leads to the activation of a protective signalling cascade termed the Unfolded Protein Response (UPR). However, chronic UPR activation can ultimately result in cellular apoptosis. Emerging evidence suggests that cells undergoing ER stress (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  11.  9
    Membrane shaping proteins, lipids, and cytoskeleton: Recipe for nascent lipid droplet formation.Manasi S. Apte & Amit S. Joshi - 2022 - Bioessays 44 (9):2200038.
    Lipid droplets (LDs) are ubiquitous, neutral lipid storage organelles that act as hubs of metabolic processes. LDs are structurally unique with a hydrophobic core that mainly consists of neutral lipids, sterol esters, and triglycerides, enclosed within a phospholipid monolayer. Nascent LD formation begins with the accumulation of neutral lipids in the endoplasmic reticulum (ER) bilayer. The ER membrane proteins such as seipin, LDAF1, FIT, and MCTPs are reported to play an important role in the formation of nascent LDs. (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  12.  12
    Asymmetric damage segregation at cell division via protein aggregate fusion and attachment to organelles.Miguel Coelho & Iva M. Tolić - 2015 - Bioessays 37 (7):740-747.
    The segregation of damaged components at cell division determines the survival and aging of cells. In cells that divide asymmetrically, such as Saccharomyces cerevisiae, aggregated proteins are retained by the mother cell. Yet, where and how aggregation occurs is not known. Recent work by Zhou and collaborators shows that the birth of protein aggregates, under specific stress conditions, requires active translation, and occurs mainly at the endoplasmic reticulum. Later, aggregates move to the mitochondrial surface through fis1‐dependent association. During (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  13.  25
    Multi‐step down‐regulation of the secretory pathway in mitosis: A fresh perspective on protein trafficking.Foong May Yeong - 2013 - Bioessays 35 (5):462-471.
    The secretory pathway delivers proteins synthesized at the rough endoplasmic reticulum (RER) to various subcellular locations via the Golgi apparatus. Currently, efforts are focused on understanding the molecular machineries driving individual processes at the RER and Golgi that package, modify and transport proteins. However, studies are routinely performed using non‐dividing cells. This obscures the critical issue of how the secretory pathway is affected by cell division. Indeed, several studies have indicated that protein trafficking is down‐regulated during mitosis. Moreover, (...)
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  14.  25
    ERAD ubiquitin ligases.Martin Mehnert, Thomas Sommer & Ernst Jarosch - 2010 - Bioessays 32 (10):905-913.
    In eukaryotic cells terminally misfolded proteins of the secretory pathway are retarded in the endoplasmic reticulum (ER) and subsequently degraded in a ubiquitin‐proteasome‐dependent manner. This highly conserved process termed ER‐associated protein degradation (ERAD) ensures homeostasis in the secretory pathway by disposing faulty polypeptides and preventing their deleterious accumulation and eventual aggregation in the cell. The focus of this paper is the functional description of membrane‐bound ubiquitin ligases, which are involved in all critical steps of ERAD. In the end (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  15.  16
    Fine‐tuning ER‐phagy by post‐translational modifications.Mohamed A. Eldeeb, Cornelia E. Zorca, Mohamed A. Ragheb, Fatma B. Rashidi & Doaa S. Salah El-Din - 2021 - Bioessays 43 (2):2000212.
    Autophagy functions in both selective and non‐selective ways to maintain cellular homeostasis. Endoplasmic reticulum autophagy (ER‐phagy) is a subclass of autophagy responsible for the degradation of the endoplasmic reticulum through selective encapsulation into autophagosomes. ER‐phagy occurs both under physiological conditions and in response to stress cues, and plays a crucial role in maintaining the homeostatic control of the organelle. Although specific receptors that target parts of the ER membrane, as well as, internal proteins for lysosomal degradation (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  16. Field equations, quantum mechanics and geotropism.Han J. F. Geurdes - manuscript
    The biochemistry of geotropism in plants and gravisensing in e.g. cyanobacteria or paramacia is still not well understood today [1]. Perhaps there are more ways than one for organisms to sense gravity. The two best known relatively old explanations for gravity sensing are sensing through the redistribution of cellular starch statoliths and sensing through redistribution of auxin. The starch containing statoliths in a gravity field produce pressure on the endoplasmic reticulum of the cell. This enables the cell to (...)
    Direct download  
     
    Export citation  
     
    Bookmark  
  17.  14
    MOTS‐c: A Mitochondrial‐Encoded Regulator of the Nucleus.Bérénice A. Benayoun & Changhan Lee - 2019 - Bioessays 41 (9):1900046.
    Mitochondria are increasingly being recognized as information hubs that sense cellular changes and transmit messages to other cellular components, such as the nucleus, the endoplasmic reticulum (ER), the Golgi apparatus, and lysosomes. Nonetheless, the interaction between mitochondria and the nucleus is of special interest because they both host part of the cellular genome. Thus, the communication between genome‐bearing organelles would likely include gene expression regulation. Multiple nuclear‐encoded proteins have been known to regulate mitochondrial gene expression. On the contrary, (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  18.  17
    The molecular basis of the type 1 glycogen storage diseases.Ann Burchell - 1992 - Bioessays 14 (6):395-400.
    Microsomal glucose‐6‐phosphatase catalyses the last step in liver glucose production. Glucose‐6‐phosphatase deficiency, now termed type 1 glycogen storage disease, was first described almost 40 years ago but until recently very little was known about the molecular basis of the various type 1 glycogen storage diseases. Recently we have shown that at least six different proteins are needed for normal glucose‐6‐phosphatase activity in liver. Four of the proteins have been purified and three cloned. Study of the type 1 glycogen storage diseases (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  19.  32
    Membrane Transport at an Organelle Interface in the Early Secretory Pathway: Take Your Coat Off and Stay a While.Michael G. Hanna, Jennifer L. Peotter, E. B. Frankel & Anjon Audhya - 2018 - Bioessays 40 (7):1800004.
    Most metazoan organisms have evolved a mildly acidified and calcium diminished sorting hub in the early secretory pathway commonly referred to as the Endoplasmic Reticulum‐Golgi intermediate compartment (ERGIC). These membranous vesicular‐tubular clusters are found tightly juxtaposed to ER subdomains that are competent for the production of COPII‐coated transport carriers. In contrast to many unicellular systems, metazoan COPII carriers largely transit just a few hundred nanometers to the ERGIC, prior to COPI‐dependent transport on to the cis‐Golgi. The mechanisms underlying (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  20.  6
    Controlling contacts—Molecular mechanisms to regulate organelle membrane tethering.Suzan Kors, Smija M. Kurian, Joseph L. Costello & Michael Schrader - 2022 - Bioessays 44 (11):2200151.
    In recent years, membrane contact sites (MCS), which mediate interactions between virtually all subcellular organelles, have been extensively characterized and shown to be essential for intracellular communication. In this review essay, we focus on an emerging topic: the regulation of MCS. Focusing on the tether proteins themselves, we discuss some of the known mechanisms which can control organelle tethering events and identify apparent common regulatory hubs, such as the VAP interface at the endoplasmic reticulum (ER). We also highlight (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  21.  3
    Sorting of proteins to the vacuoles of plant cells.Alessandro Vitale & Maarten J. Chrispeels - 1992 - Bioessays 14 (3):151-160.
    The secretory system of plant cells sorts a large number of soluble proteins that either are secreted or accumulate in vacuoles. Secretion is a bulk‐flow process that requires no information beyond the presence of a signal peptide necessary to enter the endoplasmic reticulum. Many vacuolar proteins are glycoproteins and the glycans are often modified as the proteins pass through the Golgi complex. Vacuolar targeting information is not contained in glycans as it is in animal cells; rather, targeting information (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  22.  23
    Making new out of old: Recycling and modification of an ancient protein translocation system during eukaryotic evolution.Kathrin Bolte, Nicole Gruenheit, Gregor Felsner, Maik S. Sommer, Uwe-G. Maier & Franziska Hempel - 2011 - Bioessays 33 (5):368-376.
    At first glance the three eukaryotic protein translocation machineries – the ER‐associated degradation (ERAD) transport apparatus of the endoplasmic reticulum, the peroxisomal importomer and SELMA, the pre‐protein translocator of complex plastids – appear quite different. However, mechanistic comparisons and phylogenetic analyses presented here suggest that all three translocation machineries share a common ancestral origin, which highlights the recycling of pre‐existing components as an effective evolutionary driving force.Editor's suggested further reading in BioEssays ERAD ubiquitin ligases Abstract.
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   3 citations  
  23.  5
    Subcellular dynamics of ethylene signaling drive plant plasticity to growth and stress.Yuan-Chi Chien & Gyeong Mee Yoon - 2024 - Bioessays 46 (6):2400043.
    Volatile compounds, such as nitric oxide and ethylene gas, play a vital role as signaling molecules in organisms. Ethylene is a plant hormone that regulates a wide range of plant growth, development, and responses to stress and is perceived by a family of ethylene receptors that localize in the endoplasmic reticulum. Constitutive Triple Response 1 (CTR1), a Raf‐like protein kinase and a key negative regulator for ethylene responses, tethers to the ethylene receptors, but undergoes nuclear translocation upon activation (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  24.  51
    Selective forces for the origin of the eukaryotic nucleus.Purificación López-García & David Moreira - 2006 - Bioessays 28 (5):525-533.
    The origin of the eukaryotic cell nucleus and the selective forces that drove its evolution remain unknown and are a matter of controversy. Autogenous models state that both the nucleus and endoplasmic reticulum (ER) derived from the invagination of the plasma membrane, but most of them do not advance clear selective forces for this process. Alternative models proposing an endosymbiotic origin of the nucleus fail to provide a pathway fully compatible with our knowledge of cell biology. We propose (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   8 citations  
  25.  2
    Omegasomes control formation, expansion, and closure of autophagosomes.Viola Nähse, Harald Stenmark & Kay O. Schink - 2024 - Bioessays 46 (6):2400038.
    Autophagy, an essential cellular process for maintaining cellular homeostasis and eliminating harmful cytoplasmic objects, involves the de novo formation of double‐membraned autophagosomes that engulf and degrade cellular debris, protein aggregates, damaged organelles, and pathogens. Central to this process is the phagophore, which forms from donor membranes rich in lipids synthesized at various cellular sites, including the endoplasmic reticulum (ER), which has emerged as a primary source. The ER‐associated omegasomes, characterized by their distinctive omega‐shaped structure and accumulation of phosphatidylinositol (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  26.  26
    Modeling and simulation of biological systems from image data.Ivo F. Sbalzarini - 2013 - Bioessays 35 (5):482-490.
    This essay provides an introduction to the terminology, concepts, methods, and challenges of image‐based modeling in biology. Image‐based modeling and simulation aims at using systematic, quantitative image data to build predictive models of biological systems that can be simulated with a computer. This allows one to disentangle molecular mechanisms from effects of shape and geometry. Questions like “what is the functional role of shape” or “how are biological shapes generated and regulated” can be addressed in the framework of image‐based systems (...)
    Direct download (6 more)  
     
    Export citation  
     
    Bookmark  
  27.  14
    What are the functions of kinesin?Michael P. Sheetz - 1987 - Bioessays 7 (4):165-168.
    A variety of intracellular motile processes involve the directed movement of particles along microtubules, including organelle transport, endoplasmic reticulum extension, and movements in mitosis. Recently, a microtubule‐dependent motor protein, kinesin, was purified and was found to be present in a soluble form in a wide variety of organisms and tissues. Because microtubules provide polar pathways over long distances within cells, kinesin and the motors which move in the opposite direction to kinesin on microtubules provide a mechanism for directed (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  28.  20
    Protein disulfide isomerase is regulated in multiple ways: Consequences for conformation, activities, and pathophysiological functions.Lei Wang, Jiaojiao Yu & Chih-Chen Wang - 2021 - Bioessays 43 (3):2000147.
    Protein disulfide isomerase (PDI) is one of the most abundant and critical protein folding catalysts in the endoplasmic reticulum of eukaryotic cells. PDI consists of four thioredoxin domains and interacts with a wide range of substrate and partner proteins due to its intrinsic conformational flexibility. PDI plays multifunctional roles in a variety of pathophysiological events, both as an oxidoreductase and a molecular chaperone. Recent studies have revealed that the conformation and activity of PDI can be regulated in multiple (...)
    No categories
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  29.  16
    ER contact sites direct late endosome transport.Ruud H. Wijdeven, Marlieke L. M. Jongsma, Jacques Neefjes & Ilana Berlin - 2015 - Bioessays 37 (12):1298-1302.
    Endosomes shuttle select cargoes between cellular compartments and, in doing so, maintain intracellular homeostasis and enable interactions with the extracellular space. Directionality of endosomal transport critically impinges on cargo fate, as retrograde (microtubule minus‐end directed) traffic delivers vesicle contents to the lysosome for proteolysis, while the opposing anterograde (plus‐end directed) movement promotes recycling and secretion. Intriguingly, the endoplasmic reticulum (ER) is emerging as a key player in spatiotemporal control of late endosome and lysosome transport, through the establishment of (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  30.  94
    Identification of common variants influencing risk of the tauopathy progressive supranuclear palsy.Günter U. Höglinger, Nadine M. Melhem, Dennis W. Dickson, Patrick M. A. Sleiman, Li-San Wang, Lambertus Klei, Rosa Rademakers, Rohan de Silva, Irene Litvan, David E. Riley, John C. van Swieten, Peter Heutink, Zbigniew K. Wszolek, Ryan J. Uitti, Jana Vandrovcova, Howard I. Hurtig, Rachel G. Gross, Walter Maetzler, Stefano Goldwurm, Eduardo Tolosa, Barbara Borroni, Pau Pastor, P. S. P. Genetics Study Group, Laura B. Cantwell, Mi Ryung Han, Allissa Dillman, Marcel P. van der Brug, J. Raphael Gibbs, Mark R. Cookson, Dena G. Hernandez, Andrew B. Singleton, Matthew J. Farrer, Chang-En Yu, Lawrence I. Golbe, Tamas Revesz, John Hardy, Andrew J. Lees, Bernie Devlin, Hakon Hakonarson, Ulrich Müller & Gerard D. Schellenberg - unknown
    Progressive supranuclear palsy is a movement disorder with prominent tau neuropathology. Brain diseases with abnormal tau deposits are called tauopathies, the most common of which is Alzheimer's disease. Environmental causes of tauopathies include repetitive head trauma associated with some sports. To identify common genetic variation contributing to risk for tauopathies, we carried out a genome-wide association study of 1,114 individuals with PSP and 3,247 controls followed by a second stage in which we genotyped 1,051 cases and 3,560 controls for the (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  31.  24
    Targeting of proteins into the eukaryotic secretory pathway: Signal peptide structure/function relationships.Steven F. Nothwehr & Jeffrey I. Gordon - 1990 - Bioessays 12 (10):479-484.
    Much progress has been made in recent years regarding the mechanisms of targeting of secretory proteins to, and across, the endoplasmic reticulum (ER) membrane. Many of the cellular components involved in mediating translocation across this bilayer have been identified and characterized. Polypeptide domains of secretory proteins, termed signal peptides, have been shown to be necessary, and in most cases sufficient, for entry of preproteins into the lumen of the ER. These NH2‐ terminal segments appear to serve multiple roles (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  32.  24
    Topogenesis of peroxisomal proteins.Takashi Osumi & Yukio Fujiki - 1990 - Bioessays 12 (5):217-222.
    Molecular and biochemical analysis of the biogenesis of peroxisomes has made rapid progress in recent years. Research on the mechanism of targeting of peroxisomal proteins has revealed that many, but not all, peroxisomal proteins have a conserved tripeptide motif in their carboxy‐terminal portions which is required for entry into peroxisomes; the topogenic signal mechanism thus differs in these instances from those employed in mitochondria and endoplasmic reticulum. Other factors involved in peroxisome biogenesis are also coming to light.
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  33.  14
    Regulation of organelle transport: Lessons from color change in fish.Leah T. Haimo & Catherine D. Thaler - 1994 - Bioessays 16 (10):727-733.
    Organelles transported along microtubules are normally moved to precise locations within cells. For example, synaptic vesiceles are transported to the neruronal synapse, the Golgi apparatus is generally found in a perinuclear location, and the membranes of the endoplasmic reticulum are actively extended to the cell periphery. The correct positioning of these organelles depends on microtubules and microtubule motors. Melanophores provide an extreme example of organized organelle transport. These cells are specialized to transport pigment granules, which are coordinately moved (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  34.  14
    Protein trafficking along the exocytotic pathway.Wanjin Hong & Bor Luen Tang - 1993 - Bioessays 15 (4):231-238.
    Proteins of the exocytotic (secretory) pathway are initially targeted to the endoplasmic reticulum (ER) and then translocated across and/or inserted into the membrane of the ER. During their anterograde transport with the bulk of the membrane flow along the exocytotic pathway, some proteins are selectively retained in various intracellular compartments, while others are sorted to different branches of the pathway. The signals or structural motifs that are involved in these selective targeting processes are being revealed and investigations into (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  35.  16
    Inheriting a structural scaffold for Golgi biosynthesis.Stephen A. Jesch - 2002 - Bioessays 24 (7):584-587.
    In animal cells, the Golgi complex undergoes reversible disassembly during mitosis. The disassembly/reassembly process has been intensively studied in order to understand the mechanisms that govern organelle assembly and inheritance during cell division. A long‐standing controversy in the field has been whether formation of Golgi structure is template‐mediated or self‐organizes from components of the endoplasmic reticulum. A recent study1 however, has demonstrated that a subset of proteins that form a putative Golgi matrix can be inherited during cell division (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  36.  8
    Calcium channels and signal transduction in plant cells.Eva Johannes, James M. Brosnan & Dale Sanders - 1991 - Bioessays 13 (7):331-336.
    An increasing number of studies indicate that changes in cytosolic free Ca2+ ([Ca2+]c) mediate specific types of signal transduction in plant cells. Modulation of [Ca2+]c is likely to be achieved through changes in the activity of Ca2+ channels, which catalyse passive influx of Ca2+ to the cytosol from extracellular and intracellular compartments. Voltage‐sensitive Ca2+ channels have been detected in the plasma membranes of algae, where they control membrane electrical properties and cell turgor. These channels are sensitive to 1,4‐dihydropyridines, which in (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  37.  14
    Conformational control through translocational regulation: a new view of secretory and membrane protein folding.Vishwanath R. Lingappa, D. Thomas Rutkowski, Ramanujan S. Hegde & Olaf S. Andersen - 2002 - Bioessays 24 (8):741-748.
    We suggest a new view of secretory and membrane protein folding that emphasizes the role of pathways of biogenesis in generating functional and conformational heterogeneity. In this view, heterogeneity results from action of accessory factors either directly binding specific sequences of the nascent chain, or indirectly, changing the environment in which a particular domain is synthesized. Entrained by signaling pathways, these variables create a combinatorial set of necessary‐but‐not‐sufficient conditions that enhance synthesis and folding of particular alternate, functional, conformational forms. We (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  38.  14
    Problems And Paradigms: Golgi complex beads and the transition region.Michael Locke - 1990 - Bioessays 12 (10):495-501.
    Secretory proteins and membranes move in transfer vesicles from the rough endoplasmic reticulum through the transitional region to the outer saccule of the Golgi complex. In both arthropod and vertebrate cells, the GC beads are a characteristic structural component of the transitional region. The beads are particles about half the size of ribosomes arranged equidistantly from one another and the smooth face of the ER. In an active GC, the beads are in rings through which the ER membrane (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  39.  11
    Presenilin mutations and calcium signaling defects in the nervous and immune systems.Mark P. Mattson, Sic L. Chan & Simonetta Camandola - 2001 - Bioessays 23 (8):733-744.
    Presenilin‐1 (PS1) is thought to regulate cell differentiation and survival by modulating the Notch signaling pathway. Mutations in PS1 have been shown to cause early‐onset inherited forms of Alzheimer's disease (AD) by a gain‐of‐function mechanism that alters proteolytic processing of the amyloid precursor protein (APP) resulting in increased production of neurotoxic forms of amyloid β‐peptide. The present article considers a second pathogenic mode of action of PS1 mutations, a defect in cellular calcium signaling characterized by overfilling of endoplasmic (...) (ER) calcium stores and altered capacitive calcium entry; this abnormality may impair synaptic plasticity and sensitize neurons to apoptosis and excitotoxicity. The calcium signaling defect has also been documented in lymphocytes, suggesting a contribution of immune dysfunction to the pathogenesis of AD. A better understanding of the calcium signaling defect resulting from PS1 mutations may lead to the development of novel preventative and therapeutic strategies for disorders of the nervous and immune systems. BioEssays 23:733–744, 2001. © 2001 John Wiley & Sons, Inc. (shrink)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  40.  21
    The Endomembrane System: A Representation of the Extracellular Medium? [REVIEW]Mehmet Ozansoy & Yagmur Denizhan - 2009 - Biosemiotics 2 (3):255-267.
    Both prokaryotic and eukaryotic cells share the basic mechanisms of secretory protein synthesis. However, unlike prokaryotes, eukaryotic cells posses a system of compartments, the so-called endomembrane system, which are involved in the synthesis process. A comparison of the prokaryotic and eukaryotic protein synthesis processes and particularly the observation of the functional and structural similarity between the prokaryotic cell membrane (the interface to the cell exterior) and the membrane of the eukaryotic endoplasmic reticulum (one of the compartments within the (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark  
  41.  38
    An Emerging Group of Membrane Property Sensors Controls the Physical State of Organellar Membranes to Maintain Their Identity.Toni Radanović, John Reinhard, Stephanie Ballweg, Kristina Pesek & Robert Ernst - 2018 - Bioessays 40 (5):1700250.
    The biological membranes of eukaryotic cells harbor sensitive surveillance systems to establish, sense, and maintain characteristic physicochemical properties that ultimately define organelle identity. They are fundamentally important for membrane homeostasis and play active roles in cellular signaling, protein sorting, and the formation of vesicular carriers. Here, we compare the molecular mechanisms of Mga2 and Ire1, two sensors involved in the regulation of fatty acid desaturation and the response to unfolded proteins and lipid bilayer stress in order to identify their commonalities (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  42.  4
    Hanging the coat on a collar: Same function but different localization and mechanism for COPII.Yehonathan Malis, Koret Hirschberg & Christoph Kaether - 2022 - Bioessays 44 (10):2200064.
    An entirely different mechanism and localization were recently proposed for the COPII coat complex, challenging its well‐accepted function to select and concentrate cargo into small COPII‐coated spherical transport vesicles. Instead, the COPII complex is suggested to form a dynamic yet stationary collar that forms a boundary between the ER and the ER export membrane domain. This membrane domain, the ER exit site (ERES), is the site of COPII‐mediated sorting and concentration of transport competent proteins. Subsequently, the ERES is implicated to (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  43.  15
    The rapidly expanding CREC protein family: members, localization, function, and role in disease.Bent Honoré - 2009 - Bioessays 31 (3):262-277.
    Although many aspects of the physiological and pathophysiological mechanisms remain unknown, recent advances in our knowledge suggest that the CREC proteins are promising disease biomarkers or targets for therapeutic intervention in a variety of diseases. The CREC family of low affinity, Ca2+‐binding, multiple EF‐hand proteins are encoded by five genes,RCN1,RCN2,RCN3,SDF4, andCALU, resulting in reticulocalbin, ER Ca2+‐binding protein of 55 kDa (ERC‐55), reticulocalbin‐3, Ca2+‐binding protein of 45 kDa (Cab45), and calumenin. Alternative splicing increases the number of gene products. The proteins are (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  44.  3
    Role of the sarcoplasmic reticulum in smooth muscle.Per Hellstrand - 2002 - Bioessays 24 (5):483-484.
    Direct download  
     
    Export citation  
     
    Bookmark  
  45. Does indodicarbocyanine fluorescence reflect membrane potential of the sarcoplasmic reticulum in skeletal muscle.Hans Oetliker - 1981 - In G. Adam, I. Meszaros & E.I. Banyai (eds.), Advances in Physiological Science. pp. 5--345.
    No categories
     
    Export citation  
     
    Bookmark  
  46.  23
    A Ca2+‐binding protein with numerous roles and uses: parvalbumin in molecular biology and physiology.Syed Hasan Arif - 2009 - Bioessays 31 (4):410-421.
    Parvalbumins (PVs) are acidic, intracellular Ca2+‐binding proteins of low molecular weight. They are associated with several Ca2+‐mediated cellular activities and physiological processes. It has been suggested that PV might function as a “Ca2+ shuttle” transporting Ca2+ from troponin‐C (TnC) to the sarcoplasmic reticulum (SR) Ca2+ pump during muscle relaxation. Thus, PV may contribute to the performance of rapid, phasic movements by accelerating the contraction–relaxation cycle of fast‐twitch muscle fibers. Interestingly, PVs promote the generation of power stroke in fish by (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  47.  25
    Regulation of the Ca 2+ pump atpase by cAMP‐dependent phosphorylation of phospholamban.Michihiko Tada & Masaaki Kadoma - 1989 - Bioessays 10 (5):157-163.
    Ca2+ transients in myocardial cells are modulated by cyclic AMP‐dependent phosphorylation of a protein in the sarcoplasmic reticulum. This protein, termed phospholamban, serves to regulate the Ca2+ pump ATPase of this membrane, thus altering the mode of Ca2+ transients and the myocardial contractile response. Elucidating the structure of phospholamban and its intimate interaction with the Ca2+ pump ATPase should provide the basis for understanding, at the molecular level, how the cAMP system contributes to excitation‐contraction coupling in muscle cells.
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  48.  16
    What is the function of mitochondrial networks? A theoretical assessment of hypotheses and proposal for future research.Hanne Hoitzing, Iain G. Johnston & Nick S. Jones - 2015 - Bioessays 37 (6):687-700.
    Mitochondria can change their shape from discrete isolated organelles to a large continuous reticulum. The cellular advantages underlying these fused networks are still incompletely understood. In this paper, we describe and compare hypotheses regarding the function of mitochondrial networks. We use mathematical and physical tools both to investigate existing hypotheses and to generate new ones, and we suggest experimental and modelling strategies. Among the novel insights we underline from this work are the possibilities that (i) selective mitophagy is not (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   3 citations  
  49.  22
    Mitochondria and the culture of the Borg.Emelie Braschi & Heidi M. McBride - 2010 - Bioessays 32 (11):958-966.
    As endosymbionts, the mitochondria are unique among organelles. This review provides insights into mitochondrial behavior and introduces the idea of a unified collective, an interconnected reticulum reminiscent of the Borg, a fictional humanoid species from the Star Trek television series whereby decisions are made within their network (or “hive”), linked to signaling cascades that coordinate the cross‐talk between mitochondrial and cellular processes (“subspace domain”). Similarly, mitochondrial dynamics are determined by two distinct processes, namely the local regulation of fission/fusion and (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   3 citations  
  50.  13
    A spontaneous sarcoma dependent on host tumor‐specific immune lymphocytes.Jonathan D. Katz & Benjamin Bonavida - 1989 - Bioessays 11 (6):181-185.
    The immune surveillance theory postulates that spontaneous tumors are normally rejected by the immune system and appear only when they override host‐immune recognition and rejection mechanisms. The present mini‐review describes a spontaneous tumor system, the reticulum cell sarcomas (RCS) in SJL/J mice, that is dependent on host tumor‐specific immune lymphocytes for growth. This continuous tumor‐specific response results in tumor progression and death of the host. This tumor system contradicts the basic concept of immune surveillance. We propose as an explanation (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
1 — 50 / 51