Results for 'Hamiltonian systems'

999 found
Order:
  1.  19
    Time-Varying Impedance Control of Port Hamiltonian System with a New Energy-Storing Tank.Min Zheng, Tangqing Yuan & Tao Huang - 2018 - Complexity 2018:1-10.
    No categories
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  2.  9
    Order beyond periodicity: Fighting chaos for quasiperiodic motion of nonlinear Hamiltonian systems.Melvyn S. Berger - 1995 - In R. J. Russell, N. Murphy & A. R. Peacocke (eds.), Chaos and Complexity. Vatican Observatory Publications. pp. 185.
    Direct download  
     
    Export citation  
     
    Bookmark  
  3.  31
    On stability of equilibrium points in nonlinear fractional differential equations and fractional Hamiltonian systems.Fatemeh Keshtkar, Gholamhussian Erjaee & Mahmoud Boutefnouchet - 2016 - Complexity 21 (2):93-99.
  4.  22
    Hamiltonian Structure of the Schrödinger Classical Dynamical System.Massimo Tessarotto, Michael Mond & Davide Batic - 2016 - Foundations of Physics 46 (9):1127-1167.
    The connection between quantum mechanics and classical statistical mechanics has motivated in the past the representation of the Schrödinger quantum-wave equation in terms of “projections” onto the quantum configuration space of suitable phase-space asymptotic kinetic models. This feature has suggested the search of a possible exact super-dimensional classical dynamical system, denoted as Schrödinger CDS, which uniquely determines the time-evolution of the underlying quantum state describing a set of N like and mutually interacting quantum particles. In this paper the realization of (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  5. The challenges of quantum field theory. Tsung-Sui Chang's contribution to the quantization of constrained Hamiltonian systems / Xiaodong Yin, Zhongyuan Zhu, Donald C. Salisbury. Feynman's struggle and Dyson's surprise : the development and early application of a new means of representation. [REVIEW]Adrian Wüthrich - 2013 - In Shaul Katzir, Christoph Lehner & Jürgen Renn (eds.), Traditions and transformations in the history of quantum physics: HQ-3, Third International Conference on the History of Quantum Physics, Berlin, June 28-July 2, 2010. Edition Open Access.
     
    Export citation  
     
    Bookmark  
  6.  33
    Hamiltonian description and quantization of dissipative systems.Charles P. Enz - 1994 - Foundations of Physics 24 (9):1281-1292.
    Dissipative systems are described by a Hamiltonian, combined with a “dynamical matrix” which generalizes the simplectic form of the equations of motion. Criteria for dissipation are given and the examples of a particle with friction and of the Lotka-Volterra model are presented. Quantization is first introduced by translating generalized Poisson brackets into commutators and anticommutators. Then a generalized Schrödinger equation expressed by a dynamical matrix is constructed and discussed.
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  7.  94
    Hamiltonian Formulation of Statistical Ensembles and Mixed States of Quantum and Hybrid Systems.N. Burić, D. B. Popović, M. Radonjić & S. Prvanović - 2013 - Foundations of Physics 43 (12):1459-1477.
    Representation of quantum states by statistical ensembles on the quantum phase space in the Hamiltonian form of quantum mechanics is analyzed. Various mathematical properties and some physical interpretations of the equivalence classes of ensembles representing a mixed quantum state in the Hamiltonian formulation are examined. In particular, non-uniqueness of the quantum phase space probability density associated with the quantum mixed state, Liouville dynamics of the probability densities and the possibility to represent the reduced states of bipartite systems (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  8. Hamiltonian Privilege.Josh Hunt, Gabriele Carcassi & Christine Aidala - forthcoming - Erkenntnis:1-24.
    We argue that Hamiltonian mechanics is more fundamental than Lagrangian mechanics. Our argument provides a non-metaphysical strategy for privileging one formulation of a theory over another: ceteris paribus, a more general formulation is more fundamental. We illustrate this criterion through a novel interpretation of classical mechanics, based on three physical conditions. Two of these conditions suffice for recovering Hamiltonian mechanics. A third condition is necessary for Lagrangian mechanics. Hence, Lagrangian systems are a proper subset of Hamiltonian (...)
    No categories
    Direct download (7 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  9.  36
    Macroscopic Time Evolution and MaxEnt Inference for Closed Systems with Hamiltonian Dynamics.Domagoj Kuić, Paško Županović & Davor Juretić - 2012 - Foundations of Physics 42 (2):319-339.
    MaxEnt inference algorithm and information theory are relevant for the time evolution of macroscopic systems considered as problem of incomplete information. Two different MaxEnt approaches are introduced in this work, both applied to prediction of time evolution for closed Hamiltonian systems. The first one is based on Liouville equation for the conditional probability distribution, introduced as a strict microscopic constraint on time evolution in phase space. The conditional probability distribution is defined for the set of microstates associated (...)
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  10. Hamilton, Hamiltonian Mechanics, and Causation.Christopher Gregory Weaver - 2023 - Foundations of Science:1-45.
    I show how Sir William Rowan Hamilton’s philosophical commitments led him to a causal interpretation of classical mechanics. I argue that Hamilton’s metaphysics of causation was injected into his dynamics by way of a causal interpretation of force. I then detail how forces are indispensable to both Hamilton’s formulation of classical mechanics and what we now call Hamiltonian mechanics (i.e., the modern formulation). On this point, my efforts primarily consist of showing that the contemporary orthodox interpretation of potential energy (...)
    Direct download (8 more)  
     
    Export citation  
     
    Bookmark  
  11.  48
    A modal-Hamiltonian interpretation of quantum mechanics.Olimpia Lombardi & Mario Castagnino - 2008 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 39 (2):380-443.
    The aim of this paper is to introduce a new member of the family of the modal interpretations of quantum mechanics. In this modal-Hamiltonian interpretation, the Hamiltonian of the quantum system plays a decisive role in the property-ascription rule that selects the definite-valued observables whose possible values become actual. We show that this interpretation is effective for solving the measurement problem, both in its ideal and its non-ideal versions, and we argue for the physical relevance of the property-ascription (...)
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark   43 citations  
  12.  9
    Finite-Time Control for a Coupled Four-Tank Liquid Level System Based on the Port-Controlled Hamiltonian Method.Tao Xu, Haisheng Yu & Jinpeng Yu - 2020 - Complexity 2020:1-14.
    This work investigates the finite-time control problem for a nonlinear four-tank cross-coupled liquid level system by the port-controlled Hamiltonian model. A fixed-free methodology is exhibited which can be used to simplify the controller design procedure. To get an adjustable convergent gain of the finite-time control, a feasible technique named damping normalization is proposed. A novel parameter autotuning algorithm is given to clarify the principle of choosing parameters of the PCH method. Furthermore, a finite-time controller is designed by a state-error (...)
    No categories
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  13.  65
    Chaos and randomness: An equivalence proof of a generalized version of the Shannon entropy and the kolmogorov–sinai entropy for Hamiltonian dynamical systems.Roman Frigg - manuscript
    Chaos is often explained in terms of random behaviour; and having positive Kolmogorov–Sinai entropy (KSE) is taken to be indicative of randomness. Although seemly plausible, the association of positive KSE with random behaviour needs justification since the definition of the KSE does not make reference to any notion that is connected to randomness. A common way of justifying this use of the KSE is to draw parallels between the KSE and ShannonÕs information theoretic entropy. However, as it stands this no (...)
    Direct download  
     
    Export citation  
     
    Bookmark   1 citation  
  14.  65
    Complete Hamiltonian Description of Wave-Like Features in Classical and Quantum Physics.A. Orefice, R. Giovanelli & D. Ditto - 2009 - Foundations of Physics 39 (3):256-272.
    The analysis of the Helmholtz equation is shown to lead to an exact Hamiltonian system describing in terms of ray trajectories, for a stationary refractive medium, a very wide family of wave-like phenomena (including diffraction and interference) going much beyond the limits of the geometrical optics (“eikonal”) approximation, which is contained as a simple limiting case. Due to the fact, moreover, that the time independent Schrödinger equation is itself a Helmholtz-like equation, the same mathematics holding for a classical optical (...)
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark  
  15.  70
    Tracking down gauge: An ode to the constrained Hamiltonian formalism.John Earman - 2003 - In Katherine Brading & Elena Castellani (eds.), Symmetries in Physics: Philosophical Reflections. Cambridge University Press. pp. 140--62.
    Like moths attracted to a bright light, philosophers are drawn to glitz. So in discussing the notions of ‘gauge’, ‘gauge freedom’, and ‘gauge theories’, they have tended to focus on examples such as Yang–Mills theories and on the mathematical apparatus of fibre bundles. But while Yang–Mills theories are crucial to modern elementary particle physics, they are only a special case of a much broader class of gauge theories. And while the fibre bundle apparatus turned out, in retrospect, to be the (...)
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark   38 citations  
  16.  68
    Hamiltonian Map to Conformal Modification of Spacetime Metric: Kaluza-Klein and TeVeS. [REVIEW]Lawrence Horwitz, Avi Gershon & Marcelo Schiffer - 2011 - Foundations of Physics 41 (1):141-157.
    It has been shown that the orbits of motion for a wide class of non-relativistic Hamiltonian systems can be described as geodesic flows on a manifold and an associated dual by means of a conformal map. This method can be applied to a four dimensional manifold of orbits in spacetime associated with a relativistic system. We show that a relativistic Hamiltonian which generates Einstein geodesics, with the addition of a world scalar field, can be put into correspondence (...)
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark  
  17.  42
    The Hamiltonian Syllogistic.Ian Pratt-Hartmann - 2011 - Journal of Logic, Language and Information 20 (4):445-474.
    This paper undertakes a re-examination of Sir William Hamilton’s doctrine of the quantification of the predicate . Hamilton’s doctrine comprises two theses. First, the predicates of traditional syllogistic sentence-forms contain implicit existential quantifiers, so that, for example, All p is q is to be understood as All p is some q . Second, these implicit quantifiers can be meaningfully dualized to yield novel sentence-forms, such as, for example, All p is all q . Hamilton attempted to provide a deductive system (...)
    Direct download (7 more)  
     
    Export citation  
     
    Bookmark   8 citations  
  18. A modal-Hamiltonian interpretation of quantum mechanics.Olimpia Lombardi & Mario Castagnino - 2008 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 39 (2):380-443.
    The aim of this paper is to introduce a new member of the family of the modal interpretations of quantum mechanics. In this modal-Hamiltonian interpretation, the Hamiltonian of the quantum system plays a decisive role in the property-ascription rule that selects the definite-valued observables whose possible values become actual. We show that this interpretation is effective for solving the measurement problem, both in its ideal and its non-ideal versions, and we argue for the physical relevance of the property-ascription (...)
    Direct download (10 more)  
     
    Export citation  
     
    Bookmark   41 citations  
  19.  86
    Change in Hamiltonian general relativity from the lack of a time-like Killing vector field.J. Brian Pitts - 2014 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 47:68-89.
    In General Relativity in Hamiltonian form, change has seemed to be missing, defined only asymptotically, or otherwise obscured at best, because the Hamiltonian is a sum of first-class constraints and a boundary term and thus supposedly generates gauge transformations. Attention to the gauge generator G of Rosenfeld, Anderson, Bergmann, Castellani et al., a specially _tuned sum_ of first-class constraints, facilitates seeing that a solitary first-class constraint in fact generates not a gauge transformation, but a bad physical change in (...)
    Direct download (9 more)  
     
    Export citation  
     
    Bookmark   23 citations  
  20.  6
    What Are Observables in Hamiltonian Einstein–Maxwell Theory?James Pitts - 2019 - Foundations of Physics 49 (8):786-796.
    Is change missing in Hamiltonian Einstein–Maxwell theory? Given the most common definition of observables, observables are constants of the motion and nonlocal. Unfortunately this definition also implies that the observables for massive electromagnetism with gauge freedom are inequivalent to those of massive electromagnetism without gauge freedom. The alternative Pons–Salisbury–Sundermeyer definition of observables, aiming for Hamiltonian–Lagrangian equivalence, uses the gauge generator G, a tuned sum of first-class constraints, rather than each first-class constraint separately, and implies equivalent observables for equivalent (...)
    Direct download (6 more)  
     
    Export citation  
     
    Bookmark   3 citations  
  21.  12
    Change in Hamiltonian General Relativity with Spinors.J. Brian Pitts - 2021 - Foundations of Physics 51 (6):1-30.
    In General Relativity in Hamiltonian form, change has seemed to be missing, defined only asymptotically, or otherwise obscured at best, because the Hamiltonian is a sum of first-class constraints and a boundary term and thus supposedly generates gauge transformations. By construing change as essential time dependence, one can find change locally in vacuum GR in the Hamiltonian formulation just where it should be. But what if spinors are present? This paper is motivated by the tendency in space-time (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  22.  19
    The quantization of the Hamiltonian in curved space.J. M. Domingos & M. H. Caldeira - 1984 - Foundations of Physics 14 (7):607-623.
    The construction of the quantum-mechanical Hamiltonian by canonical quantization is examined. The results are used to enlighten examples taken from slow nuclear collective motion. Hamiltonians, obtained by a thoroughly quantal method (generator-coordinate method) and by the canonical quantization of the semiclassical Hamiltonian, are compared. The resulting simplicity in the physics of a system constrained to lie in a curved space by the introduction of local Riemannian coordinates is emphasized. In conclusion, a parallel is established between the result for (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  23.  18
    On Defining the Hamiltonian Beyond Quantum Theory.Dominic Branford, Oscar C. O. Dahlsten & Andrew J. P. Garner - 2018 - Foundations of Physics 48 (8):982-1006.
    Energy is a crucial concept within classical and quantum physics. An essential tool to quantify energy is the Hamiltonian. Here, we consider how to define a Hamiltonian in general probabilistic theories—a framework in which quantum theory is a special case. We list desiderata which the definition should meet. For 3-dimensional systems, we provide a fully-defined recipe which satisfies these desiderata. We discuss the higher dimensional case where some freedom of choice is left remaining. We apply the definition (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark  
  24. Classical Mechanics Is Lagrangian; It Is Not Hamiltonian.Erik Curiel - 2014 - British Journal for the Philosophy of Science 65 (2):269-321.
    One can (for the most part) formulate a model of a classical system in either the Lagrangian or the Hamiltonian framework. Though it is often thought that those two formulations are equivalent in all important ways, this is not true: the underlying geometrical structures one uses to formulate each theory are not isomorphic. This raises the question of whether one of the two is a more natural framework for the representation of classical systems. In the event, the answer (...)
    Direct download (11 more)  
     
    Export citation  
     
    Bookmark   56 citations  
  25.  41
    Particle on a Torus Knot: A Hamiltonian Analysis.Praloy Das & Subir Ghosh - 2016 - Foundations of Physics 46 (12):1649-1665.
    We have studied the dynamics and symmetries of a particle constrained to move in a torus knot. The Hamiltonian system turns out to be Second Class in Dirac’s formulation and the Dirac brackets yield novel noncommutative structures. The equations of motion are obtained for a path in general where the knot is present in the particle orbit but it is not restricted to a particular torus. We also study the motion when it is restricted to a specific torus. The (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark  
  26.  25
    Dynamical and Hamiltonian formulation of General Relativity.Domenico Giulini - unknown
    This is a substantially expanded version of a chapter-contribution to "The Springer Handbook of Spacetime", edited by Abhay Ashtekar and Vesselin Petkov, published by Springer Verlag in 2014. This contribution introduces the reader to the reformulation of Einstein's field equations of General Relativity as a constrained evolutionary system of Hamiltonian type and discusses some of its uses,together with some technical and conceptual aspects. Attempts were made to keep the presentation self contained and accessible to first-year graduate students. This implies (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  27.  70
    A new application of the modal-Hamiltonian interpretation of quantum mechanics: The problem of optical isomerism.Sebastian Fortin, Olimpia Lombardi & Juan Camilo Martínez González - 2018 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 62:123-135.
    The modal-Hamiltonian interpretation belongs to the modal family of interpretations of quantum mechanics. By endowing the Hamiltonian with the role of selecting the subset of the definite-valued observables of the system, it accounts for ideal and non-ideal measurements, and also supplies a criterion to distinguish between reliable and non-reliable measurements in the non-ideal case. It can be reformulated in an explicitly invariant form, in terms of the Casimir operators of the Galilean group, and the compatibility of the MHI (...)
    No categories
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark   9 citations  
  28. Compatibility between Environment-Induced Decoherence and the Modal-Hamiltonian Interpretation of Quantum Mechanics.Olimpia Lombardi, Juan Sebastián Ardenghi, Sebastian Fortin & Mario Castagnino - 2011 - Philosophy of Science 78 (5):1024-1036.
    Given the impressive success of environment-induced decoherence, nowadays no interpretation of quantum mechanics can ignore its results. The modal-Hamiltonian interpretation has proved to be effective for solving several interpretative problems, but since its actualization rule applies to closed systems, it seems to stand at odds with EID. The purpose of this article is to show that this is not the case: the states einselected by the interaction with the environment according to EID are the eigenvectors of an actual-valued (...)
    Direct download (10 more)  
     
    Export citation  
     
    Bookmark   9 citations  
  29. The ergodic hierarchy, randomness and Hamiltonian chaos.Joseph Berkovitz, Roman Frigg & Fred Kronz - 2006 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 37 (4):661-691.
    Various processes are often classified as both deterministic and random or chaotic. The main difficulty in analysing the randomness of such processes is the apparent tension between the notions of randomness and determinism: what type of randomness could exist in a deterministic process? Ergodic theory seems to offer a particularly promising theoretical tool for tackling this problem by positing a hierarchy, the so-called ‘ergodic hierarchy’, which is commonly assumed to provide a hierarchy of increasing degrees of randomness. However, that notion (...)
    Direct download (8 more)  
     
    Export citation  
     
    Bookmark   32 citations  
  30.  2
    An Innovative Way to Generate Hamiltonian Energy of a New Hyperchaotic Complex Nonlinear Model and Its Control.Kholod M. Abualnaja - 2020 - Complexity 2020:1-10.
    We are implementing a new Rabinovich hyperchaotic structure with complex variables in this research. This modern system is a real, autonomous hyperchaotic, and 8-dimensional continuous structure. Some of the characteristics of this system, as well as for invariance, dissipation, balance, and stability, are technically analyzed. Some other properties are also studied numerically, such as Lyapunov exponents, Lyapunov dimension, bifurcation diagrams, and chaotic actions. Hamiltonian energy is being studied and applying by using the innovative method. Via active control method, we (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  31.  33
    The Analysis of Lagrangian and Hamiltonian Properties of the Classical Relativistic Electrodynamics Models and Their Quantization.Nikolai N. Bogolubov & Anatoliy K. Prykarpatsky - 2010 - Foundations of Physics 40 (5):469-493.
    The Lagrangian and Hamiltonian properties of classical electrodynamics models and their associated Dirac quantizations are studied. Using the vacuum field theory approach developed in (Prykarpatsky et al. Theor. Math. Phys. 160(2): 1079–1095, 2009 and The field structure of a vacuum, Maxwell equations and relativity theory aspects. Preprint ICTP) consistent canonical Hamiltonian reformulations of some alternative classical electrodynamics models are devised, and these formulations include the Lorentz condition in a natural way. The Dirac quantization procedure corresponding to the (...) formulations is developed. The crucial importance of the rest reference systems, with respect to which the dynamics of charged point particles is framed, is explained and emphasized. A concise expression for the Lorentz force is derived by suitably taking into account the duality of electromagnetic field and charged particle interactions. Finally, a physical explanation of the vacuum field medium and its relativistic properties fitting the mathematical framework developed is formulated and discussed. (shrink)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  32.  30
    How Different Interpretations of Quantum Mechanics can Enrich Each Other: The Case of the Relational Quantum Mechanics and the Modal-Hamiltonian Interpretation.Olimpia Lombardi & Juan Sebastián Ardenghi - 2022 - Foundations of Physics 52 (3):1-21.
    In the literature on the interpretation of quantum mechanics, not many works attempt to adopt a proactive perspective aimed at seeing how different interpretations can enrich each other through a productive dialogue. In particular, few proposals have been devised to show that different approaches can be clarified by comparing them, and can even complement each other, improving or leading to a more fertile overall approach. The purpose of this paper is framed within this perspective of complementation and mutual enrichment. In (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  33.  15
    A complex formulation of generalized Hamiltonian (Birkhoffian) theory.J. McEwan - 1993 - Foundations of Physics 23 (2):313-327.
    Fundamental analytic, algebraic, and geometric properties of generalized Hamiltonian (Birkhoffian) theory are compared with the properties of a covering unitary phase-space formulation based on complex variables of the form (p+iq). Technical advantages in the unitary phase-space formulation are illustrated by a detailed discussion of the one-dimensional extended damped harmonic oscillator. One advantage is the ability to fully describe nonconservative constraint forces within a globally conservative system. Another advantage is that wider classes of gauge transformations are available to simplify the (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  34. Classical mechanics is lagrangian; it is not hamiltonian; the semantics of physical theory is not semantical.Erik Curiel - unknown
    One can (for the most part) formulate a model of a classical system in either the Lagrangian or the Hamiltonian framework. Though it is often thought that those two formulations are equivalent in all important ways, this is not true: the underlying geometrical structures one uses to formulate each theory are not isomorphic. This raises the question whether one of the two is a more natural framework for the representation of classical systems. In the event, the answer is (...)
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  35. The central role of the Hamiltonian in quantum mechanics: Decoherence and interpretarion.Olimpia Lombardi - 2010 - Manuscrito 33 (1):307-349.
    The core of the environment-induced decoherence program relies on the interaction between the system and its environment; this interaction leads interference to vanish with respect to a definite “preferred basis”. On the other hand, modal interpretations of quantum mechanics supply criteria to select the “preferred context”, where observables acquire definite values. The purpose of this paper is to show the compatibility between the modal interpretative framework and the results of the decoherence program, a compatibility that comes to the light when (...)
     
    Export citation  
     
    Bookmark   2 citations  
  36.  19
    The continuity equation and the Hamiltonian formalism in quantum mechanics.L. Ferrari - 1987 - Foundations of Physics 17 (4):329-343.
    The relationship between the continuity equation and the HamiltonianH of a quantum system is investigated from a nonstandard point of view. In contrast to the usual approaches, the expression of the current densityJ ψ is givenab initio by means of a transport-velocity operatorV T, whose existence follows from a “weak” formulation of the correspondence principle. Once given a Hilbert-space metricM, it is shown that the equation of motion and the continuity equation actually represent a system in theunknown operatorsH andV T, (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  37.  37
    Generalized two-level quantum dynamics. II. Non-Hamiltonian state evolution.William Band & James L. Park - 1978 - Foundations of Physics 8 (1-2):45-58.
    A theorem is derived that enables a systematic enumeration of all the linear superoperators ℒ (associated with a two-level quantum system) that generate, via the law of motion ℒρ= $\dot \rho$ , mappings ρ(0) → ρ(t) restricted to the domain of statistical operators. Such dynamical evolutions include the usual Hamiltonian motion as a special case, but they also encompass more general motions, which are noncyclic and feature a destination state ρ(t → ∞) that is in some cases independent of (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   3 citations  
  38.  67
    The Distance Between Classical and Quantum Systems.Deanna Abernethy & John R. Klauder - 2005 - Foundations of Physics 35 (5):881-895.
    In a recent paper, a “distance” function, $\cal D$ , was defined which measures the distance between pure classical and quantum systems. In this work, we present a new definition of a “distance”, D, which measures the distance between either pure or impure classical and quantum states. We also compare the new distance formula with the previous formula, when the latter is applicable. To illustrate these distances, we have used 2 × 2 matrix examples and two-dimensional vectors for simplicity (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark  
  39. In What Sense is the Kolmogorov-Sinai Entropy a Measure for Chaotic Behaviour?—Bridging the Gap Between Dynamical Systems Theory and Communication Theory.Roman Frigg - 2004 - British Journal for the Philosophy of Science 55 (3):411-434.
    On an influential account, chaos is explained in terms of random behaviour; and random behaviour in turn is explained in terms of having positive Kolmogorov-Sinai entropy (KSE). Though intuitively plausible, the association of the KSE with random behaviour needs justification since the definition of the KSE does not make reference to any notion that is connected to randomness. I provide this justification for the case of Hamiltonian systems by proving that the KSE is equivalent to a generalized version (...)
    Direct download (11 more)  
     
    Export citation  
     
    Bookmark   18 citations  
  40.  55
    Quantum information in neural systems.Danko D. Georgiev - 2021 - Symmetry 13 (5):773.
    Identifying the physiological processes in the central nervous system that underlie our conscious experiences has been at the forefront of cognitive neuroscience. While the principles of classical physics were long found to be unaccommodating for a causally effective consciousness, the inherent indeterminism of quantum physics, together with its characteristic dichotomy between quantum states and quantum observables, provides a fertile ground for the physical modeling of consciousness. Here, we utilize the Schrödinger equation, together with the Planck-Einstein relation between energy and frequency, (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  41.  6
    Limit Cycles of a Class of Perturbed Differential Systems via the First-Order Averaging Method.Amor Menaceur, Salah Mahmoud Boulaaras, Amar Makhlouf, Karthikeyan Rajagobal & Mohamed Abdalla - 2021 - Complexity 2021:1-6.
    By means of the averaging method of the first order, we introduce the maximum number of limit cycles which can be bifurcated from the periodic orbits of a Hamiltonian system. Besides, the perturbation has been used for a particular class of the polynomial differential systems.
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  42.  84
    On the approach to thermal equilibrium of macroscopic quantum systems.Sheldon Goldstein & Roderich Tumulka - unknown
    We consider an isolated, macroscopic quantum system. Let H be a microcanonical “energy shell,” i.e., a subspace of the system’s Hilbert space spanned by the (finitely) many energy eigenstates with energies between E and E + δE. The thermal equilibrium macro-state at energy E corresponds to a subspace Heq of H such that dim Heq/ dim H is close to 1. We say that a system with state vector ψ H is in thermal equilibrium if ψ is “close” to Heq. (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   18 citations  
  43.  13
    Statistical Mechanics of Covariant Systems with Multi-fingered Time.Goffredo Chirco & Thibaut Josset - 2021 - Foundations of Physics 51 (1):1-11.
    In recent previous work, the authors proposed a new approach extending the framework of statistical mechanics to reparametrization-invariant systems with no additional gauges. In this paper, the approach is generalized to systems defined by more than one Hamiltonian constraint. We show how well-known features as the Ehrenfest–Tolman effect and the Jüttner distribution for the relativistic gas can be consistently recovered from a covariant approach in the multi-fingered framework. Eventually, the crucial role played by the interaction in the (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  44.  4
    The Three-Body Problem and the Equations of Dynamics: Poincaré's Foundational Work on Dynamical Systems Theory.Henri Poincaré - 2017 - Cham: Imprint: Springer.
    Here is an accurate and readable translation of a seminal article by Henri Poincaré that is a classic in the study of dynamical systems popularly called chaos theory. In an effort to understand the stability of orbits in the solar system, Poincaré applied a Hamiltonian formulation to the equations of planetary motion and studied these differential equations in the limited case of three bodies to arrive at properties of the equations' solutions, such as orbital resonances and horseshoe orbits. (...)
    Direct download  
     
    Export citation  
     
    Bookmark  
  45.  44
    Stochastic electrodynamics. IV. Transitions in the perturbed harmonic oscillator-zero-point field system.G. H. Goedecke - 1984 - Foundations of Physics 14 (1):41-63.
    In this fourth paper in a series on stochastic electrodynamics (SED), the harmonic oscillator-zero-point field system in the presence of an arbitrary applied classical radiation field is studied further. The exact closed-form expressions are found for the time-dependent probability that the oscillator is in the nth eigenstate of the unperturbed SED Hamiltonian H 0 , the same H 0 as that of ordinary quantum mechanics. It is shown that an eigenvalue of H 0 is the average energy that the (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  46.  79
    Chaos in a model of an open quantum system.Frederick M. Kronz - 2000 - Philosophy of Science 67 (3):453.
    In a previous essay I argued that quantum chaos cannot be exhibited in models of quantum systems within von Neumann's mathematical framework for quantum mechanics, and that it can be exhibited in models within Dirac's formal framework. In this essay, the negative thesis concerning von Neumann's framework is elaborated further by extending it to the case of Hamiltonian operators having a continuous spectrum. The positive thesis concerning Dirac's formal framework is also elaborated further by constructing a chaotic model (...)
    Direct download (8 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  47.  12
    Macroscopic Superposition States in Isolated Quantum Systems.Roman V. Buniy & Stephen D. H. Hsu - 2021 - Foundations of Physics 51 (4):1-8.
    For any choice of initial state and weak assumptions about the Hamiltonian, large isolated quantum systems undergoing Schrödinger evolution spend most of their time in macroscopic superposition states. The result follows from von Neumann’s 1929 Quantum Ergodic Theorem. As a specific example, we consider a box containing a solid ball and some gas molecules. Regardless of the initial state, the system will evolve into a quantum superposition of states with the ball in macroscopically different positions. Thus, despite their (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  48.  30
    Relations Between Different Notions of Degrees of Freedom of a Quantum System and Its Classical Model.Nikola Burić - 2015 - Foundations of Physics 45 (3):253-278.
    There are at least three different notions of degrees of freedom that are important in comparison of quantum and classical dynamical systems. One is related to the type of dynamical equations and inequivalent initial conditions, the other to the structure of the system and the third to the properties of dynamical orbits. In this paper, definitions and comparison in classical and quantum systems of the tree types of DF are formulated and discussed. In particular, we concentrate on comparison (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark  
  49.  6
    George Khushf.Christianity as an Alternative Healing System - 1997 - Bioethics Yearbook: Volume 5-Theological Developments in Bioethics: 1992-1994 5:123.
    No categories
    Direct download  
     
    Export citation  
     
    Bookmark  
  50. Paulina Taboada.The General Systems Theory: An Adequate - 2002 - In Paulina Taboada, Kateryna Fedoryka Cuddeback & Patricia Donohue-White (eds.), Person, Society, and Value: Towards a Personalist Concept of Health. Kluwer Academic.
1 — 50 / 999