Results for 'Foundations of Thermodynamics'

987 found
Order:
  1. Caratheodory and the Foundations of Thermodynamics and Statistical Physics.Ioannis E. Antoniou - 2002 - Foundations of Physics 32 (4):627-641.
    Constantin Caratheodory offered the first systematic and contradiction free formulation of thermodynamics on the basis of his mathematical work on Pfaff forms. Moreover, his work on measure theory provided the basis for later improved formulations of thermodynamics and physics of continua where extensive variables are measures and intensive variables are densities. Caratheodory was the first to see that measure theory and not topology is the natural tool to understand the difficulties (ergodicity, approach to equilibrium, irreversibility) in the (...) of Statistical Physics. He gave a measure-theoretic proof of Poincaré's recurrence theorem in 1919. This work paved the way for Birkhoff to identify later ergodicity as metric transitivity and for Koopman and von Neumann to introduce spectral analysis of dynamical systems in Hilbert spaces. Mixing provided an explanation of the approach to equilibrium but not of irreversibility. The recent extension of spectral theory of dynamical systems to locally convex spaces, achieved by the Brussels–Austin groups, gives new nontrivial time asymmetric spectral decompositions for unstable and/or non-integrable systems. In this way irreversibility is resolved in a natural way. (shrink)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  2. Helmholtz's Mechanical Foundation of Thermodynamics.Giinther Bierhalter - 1993 - In David Cahan (ed.), Hermann von Helmholtz and the Foundations of Nineteenth-Century Science. University of California Press. pp. 432--458.
  3.  46
    On the mechanical foundations of thermodynamics: The generalized Helmholtz theorem.Michele Campisi - 2005 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 36 (2):275-290.
  4.  9
    On the mechanical foundations of thermodynamics: The generalized Helmholtz theorem.Michele Campisi - 2005 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 36 (2):275-290.
  5. The foundations of quantum mechanics and the approach to thermodynamic equilibrium.David Z. Albert - 1994 - British Journal for the Philosophy of Science 45 (2):669-677.
    It is argued that certain recent advances in the construction of a theory of the collapses of Quantum Mechanical wave functions suggest the possibility of new and improved foundations for statistical mechanics, foundations in which epistemic considerations play no role.
    Direct download (14 more)  
     
    Export citation  
     
    Bookmark   33 citations  
  6.  38
    The foundations of quantum mechanics and the approach to thermodynamic equilibrium.David Z. Albert - 1994 - Erkenntnis 41 (2):191-206.
  7. Quantum Foundations of Statistical Mechanics and Thermodynamics.Orly Shenker - 2022 - In Eleanor Knox & Alastair Wilson (eds.), The Routledge Companion to Philosophy of Physics. London, UK: Routledge. pp. Ch. 29.
    Statistical mechanics is often taken to be the paradigm of a successful inter-theoretic reduction, which explains the high-level phenomena (primarily those described by thermodynamics) by using the fundamental theories of physics together with some auxiliary hypotheses. In my view, the scope of statistical mechanics is wider since it is the type-identity physicalist account of all the special sciences. But in this chapter, I focus on the more traditional and less controversial domain of this theory, namely, that of explaining the (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  8.  40
    Thermodynamic foundations of physical chemistry: reversible processes and thermal equilibrium into the history.Raffaele Pisano, Abdelkader Anakkar, Emilio Marco Pellegrino & Maxime Nagels - 2018 - Foundations of Chemistry 21 (3):297-323.
    In the history of science, the birth of classical chemistry and thermodynamics produced an anomaly within Newtonian mechanical paradigm: force and acceleration were no longer citizens of new cited sciences. Scholars tried to reintroduce them within mechanistic approaches, as the case of the kinetic gas theory. Nevertheless, Thermodynamics, in general, and its Second Law, in particular, gradually affirmed their role of dominant not-reducible cognitive paradigms for various scientific disciplines: more than twenty formulations of Second Law—a sort of indisputable (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   5 citations  
  9.  29
    Thermodynamic foundations of physical chemistry: reversible processes and thermal equilibrium into the history.Raffaele Pisano, Abdelkader Anakkar, Emilio Marco Pellegrino & Maxime Nagels - 2018 - Foundations of Chemistry 21 (3):297-323.
    In the history of science, the birth of classical chemistry and thermodynamics produced an anomaly within Newtonian mechanical paradigm: force and acceleration were no longer citizens of new cited sciences. Scholars tried to reintroduce them within mechanistic approaches, as the case of the kinetic gas theory. Nevertheless, Thermodynamics, in general, and its Second Law, in particular, gradually affirmed their role of dominant not-reducible cognitive paradigms for various scientific disciplines: more than twenty formulations of Second Law—a sort of indisputable (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   4 citations  
  10. H. Tristram Engelhardt, jr.Foundations Of Bioethics - 2002 - In Julia Lai Po-Wah Tao (ed.), Cross-Cultural Perspectives on the (Im) Possibility of Global Bioethics. Kluwer Academic. pp. 19.
    No categories
     
    Export citation  
     
    Bookmark  
  11.  18
    Brick by brick: The historical and theoretical foundations of thermodynamics Robert T. Hanlon Oxford University Press, Oxford 2020 pp xx + 646.Peter Atkins - 2022 - Foundations of Chemistry 24 (1):155-157.
  12. Shui chuen Lee.The Reappraisal of the Foundations of Bioethics: - 2002 - In Julia Lai Po-Wah Tao (ed.), Cross-Cultural Perspectives on the Possibility of Global Bioethics. Kluwer Academic.
     
    Export citation  
     
    Bookmark  
  13. Legal Theory.Foundations Of Law - forthcoming - Legal Theory.
  14.  99
    On a new foundation of equilibrium thermodynamics.J. M. Jauch - 1972 - Foundations of Physics 2 (4):327-332.
    This paper presents a new foundation of equilibrium thermodynamics based on certain ideas of T. Ehrenfest. The main result is the proof for the existence of entropy as a consequence of the conservation of energy for conservative thermal systems.
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   10 citations  
  15.  4
    The Problem of Meaning in Early Chinese Ritual Bronzes.Graham Hutt, Rosemary E. Scott, William Watson & Percival David Foundation of Chinese Art - 1971
    Direct download  
     
    Export citation  
     
    Bookmark  
  16. The Second Law of Thermodynamics: Foundations and Status. [REVIEW]D. P. Sheehan - 2007 - Foundations of Physics 37 (12):1653-1658.
    Over the last 10–15 years the second law of thermodynamics has undergone unprecedented scrutiny, particularly with respect to its universal status. This brief article introduces the proceedings of a recent symposium devoted to this topic, The second law of thermodynamics: Foundations and Status, held at University of San Diego as part of the 87th Annual Meeting of the Pacific Division of the AAAS (June 19–22, 2006). The papers are introduced under three themes: ideal gases, quantum perspectives, and (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   4 citations  
  17.  47
    The thermodynamic and phylogenetic foundations of human wickedness.P. R. Masani - 1985 - Zygon 20 (3):283-320.
  18. Information Loss as a Foundational Principle for the Second Law of Thermodynamics.T. L. Duncan & J. S. Semura - 2007 - Foundations of Physics 37 (12):1767-1773.
    In a previous paper (Duncan, T.L., Semura, J.S. in Entropy 6:21, 2004) we considered the question, “What underlying property of nature is responsible for the second law?” A simple answer can be stated in terms of information: The fundamental loss of information gives rise to the second law. This line of thinking highlights the existence of two independent but coupled sets of laws: Information dynamics and energy dynamics. The distinction helps shed light on certain foundational questions in statistical mechanics. For (...)
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark   5 citations  
  19. Compendium of the foundations of classical statistical physics.Jos Uffink - 2005 - In Jeremy Butterfield & John Earman (eds.), Handbook of the Philosophy of Physics. Elsevier.
    Roughly speaking, classical statistical physics is the branch of theoretical physics that aims to account for the thermal behaviour of macroscopic bodies in terms of a classical mechanical model of their microscopic constituents, with the help of probabilistic assumptions. In the last century and a half, a fair number of approaches have been developed to meet this aim. This study of their foundations assesses their coherence and analyzes the motivations for their basic assumptions, and the interpretations of their central (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   98 citations  
  20.  53
    Foundation of statistical mechanics: The auxiliary hypotheses.Orly Shenker - 2017 - Philosophy Compass 12 (12):e12464.
    Statistical mechanics is the name of the ongoing attempt to explain and predict certain phenomena, above all those described by thermodynamics on the basis of the fundamental theories of physics, in particular mechanics, together with certain auxiliary assumptions. In another paper in this journal, Foundations of statistical mechanics: Mechanics by itself, I have shown that some of the thermodynamic regularities, including the probabilistic ones, can be described in terms of mechanics by itself. But in order to prove those (...)
    Direct download  
     
    Export citation  
     
    Bookmark   16 citations  
  21. Foundation of statistical mechanics: Mechanics by itself.Orly Shenker - 2017 - Philosophy Compass 12 (12):e12465.
    Statistical mechanics is a strange theory. Its aims are debated, its methods are contested, its main claims have never been fully proven, and their very truth is challenged, yet at the same time, it enjoys huge empirical success and gives us the feeling that we understand important phenomena. What is this weird theory, exactly? Statistical mechanics is the name of the ongoing attempt to apply mechanics, together with some auxiliary hypotheses, to explain and predict certain phenomena, above all those described (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   17 citations  
  22. Relativistic transformations of thermodynamic quantities.Noam Agmon - 1977 - Foundations of Physics 7 (5-6):331-339.
    A unique solution is proposed to the problem of how thermodynamic processes between thermodynamic systems at relative rest “appear” to a moving observer. Assuming only transformations for entropy, pressure, and volume and the invariance of the “fundamental thermodynamic equation,” one can derive transformations for (thermodynamic) energy and temperature. The invariance of the first and second laws entails transformations for work and heat. All thermodynamic relations become Lorentz-invariant. The transformations thus derived are in principle equivalent to those of Einstein and Planck, (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  23.  17
    The principle of thermodynamic equivalence in statistical mechanics: The method of approximating Hamiltonian.A. P. Bakulev, N. N. Bogoljubov & A. M. Kurbatov - 1986 - Foundations of Physics 16 (9):871-882.
  24. The Spin-Echo Experiments and the Second Law of Thermodynamics.T. M. Ridderbos & M. L. G. Redhead - 1998 - Foundations of Physics 28 (8):1237-1270.
    We introduce a simple model for so-called spin-echo experiments. We show that the model is a mincing system. On the basis of this model we study fine-grained entropy and coarse-grained entropy descriptions of these experiments. The coarse-grained description is shown to be unable to provide an explanation of the echo signals, as a result of the way in which it ignores dynamically generated correlations. This conclusion is extended to the general debate on the foundations of statistical mechanics. We emphasize (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   37 citations  
  25.  12
    Foundations of and challenges to electrolyte chemistry.Kevin Charles de Berg - 2015 - Foundations of Chemistry 17 (1):33-48.
    Mathematics is so common-place in modern physics and chemistry that one may not realise how controversial its admittance was to these fields in the eightieth and ninetieth centuries respectively. This paper deals with the controversy during the formation of physical chemistry as a discipline in the late ninetieth and early twentieth centuries and sketches more recent criticisms of the way mathematics has been used in solution chemistry. The controversy initially related particularly to electrolyte chemistry and its emerging use of mathematics (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  26.  14
    The Zeroth Law of Thermodynamics in Special Relativity.L. Gavassino - 2020 - Foundations of Physics 50 (11):1554-1586.
    We critically revisit the definition of thermal equilibrium, in its operational formulation, provided by standard thermodynamics. We show that it refers to experimental conditions which break the covariance of the theory at a fundamental level and that, therefore, it cannot be applied to the case of moving bodies. We propose an extension of this definition which is manifestly covariant and can be applied to the study of isolated systems in special relativity. The zeroth law of thermodynamics is, then, (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  27.  3
    Connecting De Donder’s equation with the differential changes of thermodynamic potentials: understanding thermodynamic potentials.Mihalj Poša - forthcoming - Foundations of Chemistry:1-16.
    The new mathematical connection of De Donder’s differential entropy production with the differential changes of thermodynamic potentials (Helmholtz free energy, enthalpy, and Gibbs free energy) was obtained through the linear sequence of equations (direct, straightforward path), in which we use rigorous thermodynamic definitions of the partial molar thermodynamic properties. This new connection uses a global approach to the problem of reversibility and irreversibility, which is vital to global learners’ view and standardizes the linking procedure for thermodynamic potentials (Helmholtz free energy, (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  28.  25
    The Second Law of Thermodynamics at the Microscopic Scale.Thibaut Josset - 2017 - Foundations of Physics 47 (9):1185-1190.
    In quantum statistical mechanics, equilibrium states have been shown to be the typical states for a system that is entangled with its environment, suggesting a possible identification between thermodynamic and von Neumann entropies. In this paper, we investigate how the relaxation toward equilibrium is made possible through interactions that do not lead to significant exchange of energy, and argue for the validity of the second law of thermodynamics at the microscopic scale.
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark  
  29.  97
    Validity of the Generalized Second Law of Thermodynamics in the Logamediate and Intermediate Scenarios of the Universe.Arundhati Das, Surajit Chattopadhyay & Ujjal Debnath - 2012 - Foundations of Physics 42 (2):266-283.
    In this work, we have investigated the validity of the generalized second law of thermodynamics in logamediate and intermediate scenarios of the universe bounded by the Hubble, apparent, particle and event horizons using and without using first law of thermodynamics. We have observed that the GSL is valid for Hubble, apparent, particle and event horizons of the universe in the logamediate scenario of the universe using first law and without using first law. Similarly the GSL is valid for (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark  
  30. Everettian Formulation of the Second Law of Thermodynamics.Yu Feng - manuscript
    The second law of thermodynamics is traditionally interpreted as a coarse-grained result of classical mechanics. Recently its relation with quantum mechanical processes such as decoherence and measurement has been revealed in literature. In this paper we will formulate the second law and the associated time irreversibility following Everett’s idea: systems entangled with an object getting to know the branch in which they live. Accounting for this self-locating knowledge, we get two forms of entropy: objective entropy measuring the uncertainty of (...)
    Direct download  
     
    Export citation  
     
    Bookmark  
  31.  20
    Conceptual polymorphism of entropy into the history: extensions of the second law of thermodynamics towards statistical physics and chemistry during nineteenth–twentieth centuries.Raffaele Pisano, Emilio Marco Pellegrino, Abdelkader Anakkar & Maxime Nagels - 2021 - Foundations of Chemistry 23 (3):337-378.
    After the birth of thermodynamics’ second principle—outlined in Carnot's Réflexions sur la puissance motrice du feu —several studies provided new arguments in the field. Mainly, they concerned the thermodynamics’ first principle—including energy conceptualisation—, the analytical aspects of the heat propagation, the statistical aspects of the mechanical theory of heat. In other words, the second half of nineteenth century was marked by an intense interdisciplinary research activity between physics and chemistry: new disciplines applied to the heat developed in the (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  32.  99
    The principle of thermodynamic equivalence in statistical mechanics: The method of approximating Hamiltonian. [REVIEW]A. P. Bakulev, N. N. Bogolubov & A. M. Kurbatov - 1986 - Foundations of Physics 16 (1):71-71.
    We discuss the main ideas that lie at the foundations of the approximating Hamiltonian method (AHM) in statistical mechanics. The principal constraints for model Hamiltonians to be investigated by AHM are considered along with the main results obtainable by this method. We show how it is possible to enlarge the class of model Hamiltonians solvable by AHM with the help of an example of the BCS-type model.
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark  
  33.  30
    Physics and Chance: Philosophical Issues in the Foundations of Statistical Mechanics.Robert Batterman & Lawrence Sklar - 1995 - Philosophical Review 104 (4):624.
    Philosophers of physics are very familiar with foundational problems in quantum mechanics and in the theory of relativity. In both fields, the puzzles, if not solved, are at least reasonably well formulated and possess well-characterized solution strategies. Sklar’s book Physics and Chance focuses on a pair of theories, thermodynamics and statistical mechanics, for which puzzles and foundational paradoxes abound, but where there is very little agreement upon the means with which they may best be approached. As he notes in (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   64 citations  
  34. Discussion: The Foundations of Statistical Mechanics—Questions and Answers.Amit Hagar - 2005 - Philosophy of Science 72 (3):468-478.
    Huw Price (1996, 2002, 2003) argues that causal-dynamical theories that aim to explain thermodynamic asymmetry in time are misguided. He points out that in seeking a dynamical factor responsible for the general tendency of entropy to increase, these approaches fail to appreciate the true nature of the problem in the foundations of statistical mechanics (SM). I argue that it is Price who is guilty of misapprehension of the issue at stake. When properly understood, causal-dynamical approaches in the foundations (...)
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark   5 citations  
  35.  18
    Fermi’s Golden Rule and the Second Law of Thermodynamics.D. Braak & J. Mannhart - 2020 - Foundations of Physics 50 (11):1509-1540.
    We present a Gedankenexperiment that leads to a violation of detailed balance if quantum mechanical transition probabilities are treated in the usual way by applying Fermi’s “golden rule”. This Gedankenexperiment introduces a collection of two-level systems that absorb and emit radiation randomly through non-reciprocal coupling to a waveguide, as realized in specific chiral quantum optical systems. The non-reciprocal coupling is modeled by a hermitean Hamiltonian and is compatible with the time-reversal invariance of unitary quantum dynamics. Surprisingly, the combination of non-reciprocity (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  36.  92
    Statistical mechanical proof of the second law of thermodynamics based on volume entropy.Michele Campisi - 2008 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 39 (1):181-194.
    In a previous work (M. Campisi. Stud. Hist. Phil. M. P. 36 (2005) 275-290) we have addressed the mechanical foundations of equilibrium thermodynamics on the basis of the Generalized Helmholtz Theorem. It was found that the volume entropy provides a good mechanical analogue of thermodynamic entropy because it satisfies the heat theorem and it is an adiabatic invariant. This property explains the ``equal'' sign in Clausius principle ($S_f \geq S_i$) in a purely mechanical way and suggests that the (...)
    Direct download (12 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  37.  12
    The Epistemological Foundations of Freud’s Energetics Model.Jessica Tran The, Pierre Magistretti & François Ansermet - 2018 - Frontiers in Psychology 9.
    This article aims to clarify the epistemological foundations of the Freudian energetics model, starting with a historical review of the 19th century scientific context in which Freud's research lay down its roots. Beyond the physiological and anatomical references of Project for a Scientific Psychology, the physiology Freud makes reference to is in reality primarily anchored in an epistemological model derived from physics. Whilst across the Rhine, the autonomy of physiology in relation to physics was far from being accomplished, as (...)
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark  
  38. The Challenge of Children.Cooperative Parents Group of Palisades Pre-School Division & Mothers' and Children'S. Educational Foundation - 1957
    No categories
     
    Export citation  
     
    Bookmark  
  39. Hot and Heavy Matters in the Foundations of Statistical Mechanics.Craig Callender - 2011 - Foundations of Physics 41 (6):960-981.
    Are the generalizations of classical equilibrium thermodynamics true of self-gravitating systems? This question has not been addressed from a foundational perspective, but here I tackle it through a study of the “paradoxes” commonly said to afflict such systems. My goals are twofold: (a) to show that the “paradoxes” raise many questions rarely discussed in the philosophical foundations literature, and (b) to counter the idea that these “paradoxes” spell the end for gravitational equilibrium thermodynamics.
    Direct download (9 more)  
     
    Export citation  
     
    Bookmark   16 citations  
  40.  11
    Proving the Lorentz Invariance of the Entropy and the Covariance of Thermodynamics.L. Gavassino - 2021 - Foundations of Physics 52 (1):1-22.
    The standard argument for the Lorentz invariance of the thermodynamic entropy in equilibrium is based on the assumption that it is possible to perform an adiabatic transformation whose only outcome is to accelerate a macroscopic body, keeping its rest mass unchanged. The validity of this assumption constitutes the very foundation of relativistic thermodynamics and needs to be tested in greater detail. We show that, indeed, such a transformation is always possible, at least in principle. The only two assumptions invoked (...)
    No categories
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  41.  15
    Antimatter and the Second Law of Thermodynamics.Gábor Etesi - 2020 - Foundations of Science 26 (2):217-224.
    In this short paper we make a proposal that the second law of thermodynamics holds true for a closed physical system consisting of pure antimatter in the thermodynamical limit, but in a reversed form. We give two plausible arguments in favour to this proposal: one refers to the CPT theorem of relativistic quantum field theories while the other one is based on general thermodynamical arguments. However in our understanding the ultimate validity or invalidity of this idea can be decided (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  42. Physics and Chance: Philosophical Issues in the Foundations of Statistical Mechanics.Lawrence Sklar - 1993 - New York: Cambridge University Press.
    Statistical mechanics is one of the crucial fundamental theories of physics, and in his new book Lawrence Sklar, one of the pre-eminent philosophers of physics, offers a comprehensive, non-technical introduction to that theory and to attempts to understand its foundational elements. Among the topics treated in detail are: probability and statistical explanation, the basic issues in both equilibrium and non-equilibrium statistical mechanics, the role of cosmology, the reduction of thermodynamics to statistical mechanics, and the alleged foundation of the very (...)
    Direct download  
     
    Export citation  
     
    Bookmark   149 citations  
  43. Insights into the Second Law of Thermodynamics from Anisotropic Gas-Surface Interactions.S. L. Miller - 2007 - Foundations of Physics 37 (12):1660-1684.
    Thermodynamic implications of anisotropic gas-surface interactions in a closed molecular flow cavity are examined. Anisotropy at the microscopic scale, such as might be caused by reduced-dimensionality surfaces, is shown to lead to reversibility at the macroscopic scale. The possibility of a self-sustaining nonequilibrium stationary state induced by surface anisotropy is demonstrated that simultaneously satisfies flux balance, conservation of momentum, and conservation of energy. Conversely, it is also shown that the second law of thermodynamics prohibits anisotropic gas-surface interactions in “equilibrium”, (...)
    Direct download (6 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  44.  98
    Macroscopic Form of the First Law of Thermodynamics for an Adibatically Evolving Non-singular Self-gravitating Fluid.Abhas Mitra - 2011 - Foundations of Physics 41 (9):1454-1461.
    We emphasize that the pressure related work appearing in a general relativistic first law of thermodynamics should involve proper volume element rather than coordinate volume element. This point is highlighted by considering both local energy momentum conservation equation as well as particle number conservation equation. It is also emphasized that we are considering here a non-singular fluid governed by purely classical general relativity. Therefore, we are not considering here any semi-classical or quantum gravity which apparently suggests thermodynamical properties even (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark  
  45. Reducing thermodynamics to statistical mechanics: The case of entropy.Craig Callender - 1999 - Journal of Philosophy 96 (7):348-373.
    This article argues that most of the approaches to the foundations of statistical mechanics have severed their link with the original foundational project, the project of demonstrating how real mechanical systems can behave thermodynamically.
    Direct download (8 more)  
     
    Export citation  
     
    Bookmark   78 citations  
  46.  57
    First Elements for the Foundation of a New Paradigm in Physics.Paolo Renati - 2016 - World Futures 72 (1-2):19-40.
    In this article I present the extracts and summary of heuristic and speculative observations on various aspects I feel are problematic in the practice of modern physics, the definitions and methods of which are the premise for the whole of Science. The illustrations will be fully developed in a later, more extensive and in-depth work in which some theoretical solutions will also be put forward; therefore in the interests of brevity all assertions will not be demonstrated fully in this article. (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark  
  47. On the definition of extensive property energy by the first postulate of thermodynamics.Enzo Zanchini - 1986 - Foundations of Physics 16 (9):923-935.
    In the domain in which the definition of property energy is available, a rigorous and general proof of additivity is provided. Then, both the definition of energy and the proof of additivity are extended to broader domains.
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  48. Relativistic Thermodynamics: Its History and Foundations.Chuang Liu - 1991 - Dissertation, University of Pittsburgh
    Relativistic Thermodynamics of equilibrium processes has remained a strange chapter in the history of modern physics. It was established by Planck in 1908 as a simple application of Einstein's special theory of relativity. Einstein himself made substantial contributions and its final product remained officially unchallenged until 1965. In 1952, however, at the end of his career, Einstein challenged the theory in his correspondence with von Laue. Many of his unpublished suggestions anticipated the major works in the debate of the (...)
     
    Export citation  
     
    Bookmark   2 citations  
  49. Ergodic theory, interpretations of probability and the foundations of statistical mechanics.Janneke van Lith - 2001 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 32 (4):581--94.
    The traditional use of ergodic theory in the foundations of equilibrium statistical mechanics is that it provides a link between thermodynamic observables and microcanonical probabilities. First of all, the ergodic theorem demonstrates the equality of microcanonical phase averages and infinite time averages (albeit for a special class of systems, and up to a measure zero set of exceptions). Secondly, one argues that actual measurements of thermodynamic quantities yield time averaged quantities, since measurements take a long time. The combination of (...)
    Direct download (6 more)  
     
    Export citation  
     
    Bookmark   20 citations  
  50. Promotor of European Initiative.The Wit Stwosz Foundation - 2002 - Dialogue and Universalism 12 (4-5):31-32.
1 — 50 / 987