The purpose of this note is to study impulsive control and synchronization of memristor based chaotic circuits shown by Muthuswamy. We first establish a less conservative sufficient condition for the stability of memristor based chaotic circuits. After that, we discuss the effect of errors on stability. Meanwhile, we also discuss impulsive synchronization of two memristor based chaotic systems. Our results are more general and more applicable than the ones shown by Yang, Li, and Huang. Finally, several numerical examples are given (...) to show the effectiveness of our methods. (shrink)
The second law of thermodynamics is traditionally interpreted as a coarse-grained result of classical mechanics. Recently its relation with quantum mechanical processes such as decoherence and measurement has been revealed in literature. In this paper we will formulate the second law and the associated time irreversibility following Everett’s idea: systems entangled with an object getting to know the branch in which they live. Accounting for this self-locating knowledge, we get two forms of entropy: objective entropy measuring the uncertainty of the (...) state of the object alone, and subjective entropy measuring the information carried by the self-locating knowledge. By showing that the summation of the two forms of entropy is a conserved and perspective-free quantity, we interpret the second law as a statement of irreversibility in knowledge acquisition. This essentially derives the thermodynamic arrow of time from the subjective arrow of time, and provides a unified explanation for varieties of the second law, as well as the past hypothesis. (shrink)
This paper connects the hard problem of consciousness to the interpretation of quantum mechanics. It shows that constitutive Russellian pan(proto)psychism (CRP) is compatible with Everett’s relative-state (RS) interpretation. Despite targeting different problems, CRP and RS are related, for they both establish symmetry between micro- and macrosystems, and both call for a deflationary account of Subject. The paper starts from formal arguments that demonstrate the incompatibility of CRP with alternative interpretations of quantum mechanics, followed by showing that RS entails Russellian pan(proto)psychism. (...) Therefore, CRP and RS are mutually supportive. It then provides a unified ontological picture by combining CRP and RS. The challenge faced by CRP, the combination problem, can be resolved by adopting a RS version of quantum mechanics. Technically, this is achieved by a co-consciousness relation capable of explaining the difference between first-person and third-person perspectives. The hierarchical structure of the relation removes any concern on the structural mismatch between the physical and the phenomenal. (shrink)
The economical/environmental scheduling problem of the ship integrated energy system has high computational complexity, which includes more than one optimization objective, various types of constraints, and frequently fluctuated load demand. Therefore, the intelligent scheduling strategies cannot be applied to the ship energy management system online, which has limited computing power and storage space. Aiming at realizing green computing on SEMS, in this paper a typical SIES-EESP optimization model is built, considering the form of decision vectors, the economical/environmental optimization objectives, and (...) various types of real-world constraints of the SIES. Based on the complexity of SIES-EESPs, a two-stage offline-to-online multiobjective optimization strategy for SIES-EESP is proposed, which transfers part of the energy dispatch online computing task to the offline high-performance computer systems. The specific constraints handling methods are designed to reduce both continuous and discrete constraints violations of SIES-EESPs. Then, an establishment method of energy scheduling scheme-base is proposed. By using the big data offline, the economical/environmental scheduling solutions of a typical year can be obtained and stored with more computing resources and operation time on land. Thereafter, a short-term multiobjective offline-to-online optimization approach by SEMS is considered, with the application of multiobjective evolutionary algorithm and typical schemes corresponding to the actual SIES-EESPs. Simulation results show that the proposed strategy can obtain enough feasible Pareto solutions in a shorter time and get well-distributed Pareto sets with better convergence performance, which can well adapt to the features of real-world SIES-EESPs and save plenty of operation time and storage space for the SEMS. (shrink)
In this paper, we first present a generalization of the Cauchy-Schwarz inequality. As an application of our result, we obtain a new sufficient condition for the stability of a class of nonlinear impulsive control systems. We end up this note with a numerical example which shows the effectiveness of our method.
Background and PurposeTranscranial direct current stimulation is an emerging non-invasive neuromodulation technique for focal epilepsy. Because epilepsy is a disease affecting the brain network, our study was aimed to evaluate and predict the treatment outcome of cathodal tDCS by analyzing the ctDCS-induced functional network alterations.MethodsEither the active 5-day, −1.0 mA, 20-min ctDCS or sham ctDCS targeting at the most active interictal epileptiform discharge regions was applied to 27 subjects suffering from focal epilepsy. The functional networks before and after ctDCS were (...) compared employing graph theoretical analysis based on the functional magnetic resonance imaging data. A support vector machine prediction model was built to predict the treatment outcome of ctDCS using the graph theoretical measures as markers.ResultsOur results revealed that the mean clustering coefficient and the global efficiency decreased significantly, as well as the characteristic path length and the mean shortest path length at the stimulation sites in the fMRI functional networks increased significantly after ctDCS only for the patients with response to the active ctDCS. Our prediction model achieved the mean prediction accuracy of 68.3% after the nested cross validation. The mean area under the receiver operating curve was 0.75, which showed good prediction performance.ConclusionThe study demonstrated that the response to ctDCS was related to the topological alterations in the functional networks of epilepsy patients detected by fMRI. The graph theoretical measures were promising for clinical prediction of ctDCS treatment outcome. (shrink)
The faulted lacustrine Bohai Basin in eastern China contains abundant hydrocarbon resources. In these reservoirs, understanding the sandstone diagenesis and the resulting formation water provides a means to unravel the evolution processes in the basin. In most cases, the lack of isotopic and trace element analysis tests in this type of basin limits the research on the origin and evolution of formation water in this area. We have used multivariate statistical methods to classify the geochemical characteristics of the formation water (...) for the Cenozoic Formation of Bonan Sag in the Bohai Bay Basin. Analysis of correlations among the evolution processes of different ions in different types of formation water provides an understanding of the primary factors influencing the ion content. We also evaluate the water-rock interactions of different types of formation water to evaluate their geologic significance, and we find three types. Type I formation water includes a mixture of river water, lake water, and atmospheric precipitation and exhibits weak water-rock interactions. Type II formation water contains primitive freshwater and brackish lake water that has undergone an evolution process similar to that of type I formation water, but that was followed by evaporation and concentration, the dissolution and precipitation of calcite and iron calcite, and feldspar dissolution. Type III formation water, which is a product of rock reconstruction, originates from saline lake sediment water. After undergoing evolution processes similar to those of types I and II, type III formation water is also affected by dissolution of evaporite, albite, dolomite, and iron dolomite. Thus, type III formation water is the product of water-rock interactions such as precipitation, SO42− reduction, and pyrite precipitation in which the water-rock reaction controls the development mechanism and characteristics of the reservoir space. (shrink)
A session-based recommendation system is designed to predict the user’s next click behavior based on an ongoing session. Existing session-based recommendation systems usually model a session into a sequence and extract sequence features through recurrent neural network. Although the performance is greatly improved, these procedures ignore the relationships between items that contain rich information. In order to obtain rich items embeddings, we propose a novel Recommendation Model based on Multi-channel Convolutional Neural Network for session-based recommendation, RMMCNN for brevity. Specifically, we (...) capture items' internal features from three dimensions through multi-channel convolutional neural network firstly. Next, we merge the internal features with external features obtained by a GRU unit. Then, both internal features and external features are merged by an attention mechanism together as the input of the transformation function. Finally, the probability distribution is taken as the output after the softmax function. Experiments on various datasets show that our method's precision and recommendation performance are better than those of other state-of-the-art approaches. (shrink)
The purpose of this paper is to discuss modelling and synchronization of nonlinear supply chain system. Firstly, we present a new supply chain system which is sensitive to various uncertainties along with exogenous disturbances. Synchronization is an important method to reduce the negative impact of uncertainties and disturbances on the supply chain. Since impulsive control can reduce control cost and the amount of transmitted information drastically, we discuss impulsive synchronization behavior of two supply chain systems with the same structure. Finally, (...) simulation experiments are given to show the effectiveness of our analytical results. (shrink)
The faulted lacustrine Bohai Basin in eastern China contains abundant hydrocarbon resources. In these reservoirs, understanding the sandstone diagenesis and the resulting formation water provides a means to unravel the evolution processes in the basin. In most cases, the lack of isotopic and trace element analysis tests in this type of basin limits the research on the origin and evolution of formation water in this area. We have used multivariate statistical methods to classify the geochemical characteristics of the formation water (...) for the Cenozoic Formation of Bonan Sag in the Bohai Bay Basin. Analysis of correlations among the evolution processes of different ions in different types of formation water provides an understanding of the primary factors influencing the ion content. We also evaluate the water-rock interactions of different types of formation water to evaluate their geologic significance, and we find three types. Type I formation water includes a mixture of river water, lake water, and atmospheric precipitation and exhibits weak water-rock interactions. Type II formation water contains primitive freshwater and brackish lake water that has undergone an evolution process similar to that of type I formation water, but that was followed by evaporation and concentration, the dissolution and precipitation of calcite and iron calcite, and feldspar dissolution. Type III formation water, which is a product of rock reconstruction, originates from saline lake sediment water. After undergoing evolution processes similar to those of types I and II, type III formation water is also affected by dissolution of evaporite, albite, dolomite, and iron dolomite. Thus, type III formation water is the product of water-rock interactions such as precipitation, SO42− reduction, and pyrite precipitation in which the water-rock reaction controls the development mechanism and characteristics of the reservoir space. (shrink)
This paper proposes the modified generalization of the HSS to solve a large and sparse continuous Sylvester equation, improving the efficiency and robustness. The analysis shows that the MGHSS converges to the unique solution of AX + XB = C unconditionally. We also propose an inexact variant of the MGHSS and prove its convergence under certain conditions. Numerical experiments verify the efficiency of the proposed methods.