The flow of time is a deep, significant and universal aspect of human life. Yet it remains a mystery and many dismiss the flow of time as illusory. Craig Callender explores this puzzle, and offers a fascinating explanation of why creatures experience time as flowing - even if, as physics suggests, it isn't.
Perhaps the most significant contemporary theory of lawhood is the Best System (/MRL) view on which laws are true generalizations that best systematize knowledge. Our question in this paper will be how best to formulate a theory of this kind. We’ll argue that an acceptable MRL should (i) avoid inter-system comparisons of simplicity, strength, and balance, (ii) make lawhood epistemically accessible, and (iii) allow for laws in the special sciences. Attention to these problems will bring into focus a useful menu (...) of novel MRL theories, some of which solve problems the original MRL theory could not. Hence we conceive of the paper as moving toward a better Best System theory of laws. (shrink)
Is the quantum state part of the furniture of the world? Einstein found such a position indigestible, but here I present a different understanding of the wavefunction that is easy to stomach. First, I develop the idea that the wavefunction is nomological in nature, showing how the quantum It or Bit debate gets subsumed by the corresponding It or Bit debate about laws of nature. Second, I motivate the nomological view by casting quantum mechanics in a “classical” formalism (Hamilton–Jacobi theory) (...) and classical mechanics in a “quantum” formalism (Koopman–von Neumann theory) and then comparing and contrasting classical and quantum wave functions. I argue that Humeans about laws can treat classical and quantum wave functions on a par and that doing so yields many benefits. (shrink)
The no-miracles argument and the pessimistic induction are arguably the main considerations for and against scientific realism. Recently these arguments have been accused of embodying a familiar, seductive fallacy. In each case, we are tricked by a base rate fallacy, one much-discussed in the psychological literature. In this paper we consider this accusation and use it as an explanation for why the two most prominent `wholesale' arguments in the literature seem irresolvable. Framed probabilistically, we can see very clearly why realists (...) and anti-realists have been talking past one another. We then formulate a dilemma for advocates of either argument, answer potential objections to our criticism, discuss what remains (if anything) of these two major arguments, and then speculate about a future philosophy of science freed from these two arguments. In so doing, we connect the point about base rates to the wholesale/retail distinction; we believe it hints at an answer of how to distinguish profitable from unprofitable realism debates. In short, we offer a probabilistic analysis of the feeling of ennui afflicting contemporary philosophy of science. (shrink)
We propose that scientific representation is a special case of a more general notion of representation, and that the relatively well worked-out and plausible theories of the latter are directly applicable to thc scientific special case. Construing scientific representation in this way makes the so-called “problem of scientific representation” look much less interesting than it has seerned to many, and suggests that some of the debates in the literature are concerned with non-issues.
This paper discusses the mistake of understanding the laws and concepts of thermodynamics too literally in the foundations of statistical mechanics. Arguing that this error is still made in subtle ways, the article explores its occurrence in three examples: the Second Law, the concept of equilibrium and the definition of phase transitions.
The manifest image is teeming with activity. Objects are booming and buzzing by, changing their locations and properties, vivid perceptions are replaced, and we seem to be inexorably slipping into the future. Time—or at least our experience in time— seems a very turbulent sort of thing. By contrast, time in the scientist image seems very still. The fundamental laws of physics don’t differentiate between past and future, nor do they pick out a present moment that flows. Except for a minus (...) sign in the relativistic metric, there are few differences between the temporal and spatial coordinates in natural science. We seem to have, to echo another debate, an “explanatory gap” between time as we find it in experience and as we find it in science. Reconciling these two images of the world is the principal goal of philosophy of time. (shrink)
Throughout this century many philosophers and physicists have gone for thc ‘big ki11’ regarding tenses. They have tried to show via McTaggart’s paradox and special relativity that tcnscs arc logically and physically impossible, rcspcctivcly. Ncithcr attempt succccds, though as I argue, both lcavc their mark. In thc iirst two sections of thc paper I introduce some conceptual difficulties for the tensed theory of time. The next section then discusses the standing 0f tenses in light of special relativity, cspccially rcccnt work (...) by Stcin on thc topic. I argue that, Stcin’s possibility thcorcm notwithstanding, special relativity is inconsistent with any philosophicully interesting conception of tense. Finally, I search for help for tenses in the broader context of quantum theory, Lorcntzian interpretations 0f time dilation/length contraction, and gcncral relativistic spacctimcs. I suggest that these avenues d0 not provide tenses the home for which some have hoped. (shrink)
For the generalizations of thermodynamics to obtain, it appears that a very ‘special’ initial condition of the universe is required. Is this initial condition itself in need of explanation? I argue that it is not. In so doing, I offer a framework in which to think about ‘special’ initial conditions in all areas of science, though I concentrate on the case of thermodynamics. I urge the view that it is not always a serious mark against a theory that it must (...) posit an ‘improbable’ initial condition. (shrink)
An important obstacle to lawhood in the special sciences is the worry that such laws would require metaphysically extravagant conspiracies among fundamental particles. How, short of conspiracy, is this possible? In this paper we'll review a number of strategies that allow for the projectibility of special science generalizations without positing outlandish conspiracies: non-Humean pluralism, classical MRL theories of laws, and Albert and Loewer's theory. After arguing that none of the above fully succeed, we consider the conspiracy problem through the lens (...) of our preferred view of laws, an elaboration of the MRL view that we call the Better Best System (BBS) theory. BBS offers a picture on which, although all events supervene on a fundamental level, there is no one unique locus of projectibility; rather there are a large number of loci corresponding to the different areas (ecology, economics, solid-state chemistry, etc.) in which there are simple and strong generalizations to be made. While we expect that some amount of conspiracy-fear-inducing special science projectibility is inevitable given BBS, we'll argue that this is unobjectionable. It follows from BBS that the laws of any particular special or fundamental science amount to a proper subset of the laws. From this vantage point, the existence of projectible special science generalizations not guaranteed by the fundamental laws is not an occasion for conspiracy fantasies, but a predictable fact of life in a complex world. (shrink)
Thermodynamics is the science that describes much of the time asymmetric behavior found in the world. This entry's first task, consequently, is to show how thermodynamics treats temporally ‘directed’ behavior. It then concentrates on the following two questions. (1) What is the origin of the thermodynamic asymmetry in time? In a world possibly governed by time symmetric laws, how should we understand the time asymmetric laws of thermodynamics? (2) Does the thermodynamic time asymmetry explain the other temporal asymmetries? Does it (...) account, for instance, for the fact that we know more about the past than the future? The discussion thus divides between thermodynamics being an explanandum or explanans. In the former case the answer will be found in philosophy of physics; in the latter case it will be found in metaphysics, epistemology, and other fields, though in each case there will be blurring between the disciplines. (shrink)
Black hole thermodynamics is regarded as one of the deepest clues we have to a quantum theory of gravity. It motivates scores of proposals in the field, from the thought that the world is a hologram to calculations in string theory. The rationale for BHT playing this important role, and for much of BHT itself, originates in the analogy between black hole behavior and ordinary thermodynamic systems. Claiming the relationship is “more than a formal analogy,” black holes are said to (...) be governed by deep thermodynamic principles: what causes your tea to come to room temperature is said additionally to cause the area of black holes to increase. Playing the role of philosophical gadfly, we pour a little cold water on the claim that BHT is more than a formal analogy. First, we show that BHT is often based on a kind of caricature of thermodynamics. Second, we point out an important ambiguity in what systems the analogy is supposed to govern, local or global ones. Finally, and perhaps worst, we point out that one of the primary motivations for the theory arises from a terribly controversial understanding of entropy. BHT may be a useful guide to future physics. Only time will tell. But the analogy is not nearly as good as is commonly supposed. (shrink)
An important feature of life is the temporal value asymmetry. Not to be confused with temporal discounting, the value asymmetry is the fact that we prefer future rather than past preferences be satisfied. Misfortunes are better in the past--where they are "over and done"--than in the future. Using recent work in empirical psychology and evolutionary theory, we develop a theory of the nature and causes of the temporal value asymmetry. The account we develop undercuts philosophy of time arguments such as (...) that of Prior (1959), but more importantly, also begins a serious study of an interesting but understudied feature of our valuations and emotional attitudes. While in the spirit of certain past sketches about the possible origins of the temporal value asymmetry, our theory improves on them in many significant respects and suggests many clear avenues of future study. More generally, our hope is that work on the temporal value asymmetry will eventually attain the degree of rigor and explanatory power that the discounting asymmetry presently enjoys, for like this latter asymmetry, we believe the temporal value asymmetry has relevance to many practical issues in decision-making. Our paper can thus be seen as a call for a more unified methodological treatment of the two temporal asymmetries. (shrink)
Phase transitions are an important instance of putatively emergent behavior. Unlike many things claimed emergent by philosophers, the alleged emergence of phase transitions stems from both philosophical and scientific arguments. Here we focus on the case for emergence built from physics, in particular, arguments based upon the infinite idealization invoked in the statistical mechanical treatment of phase transitions. After teasing apart several challenges, we defend the idea that phase transitions are best thought of as conceptually novel, but not ontologically or (...) explanatorily irreducible to finite physics; indeed, by looking at ongoing work on “smooth phase transitions” we even suggest that they’re not even conceptually novel. In the case of renormalization group theory, consideration of infinite systems and their singular behavior provides a central theoretical tool, but this is compatible with an explanatory reduction. Phase transitions may be “emergent” in some sense of this protean term, but not in a sense that is incompatible with the reductionist project broadly construed. (shrink)
We propose that scientific representation is a special case of a more general notion of representation, and that the relatively well worked-out and plausible theories of the latter are directly applicable to the scientific special case.
ABSTRACT Unlike the relativity theory it seeks to replace, causal set theory has been interpreted to leave space for a substantive, though perhaps ‘localized’, form of ‘becoming’. The possibility of fundamental becoming is nourished by the fact that the analogue of Stein’s theorem from special relativity does not hold in CST. Despite this, we find that in many ways, the debate concerning becoming parallels the well-rehearsed lines it follows in the domain of relativity. We present, however, some new twists and (...) challenges. In particular, we show that a novel and exotic notion of becoming is compatible with causal sets. In contrast to the localized becoming considered compatible with the dynamics of CST by its advocates, our novel kind of becoming, while not answering to the typical A-theoretic demands, is global and objective. _1_ Introduction _2_ The Basics of Causal Set Theory _3_ Facing the Same Dilemma? _4_ Taking Growth Seriously _5_ Conclusion. (shrink)
Readers familiar with the workhorse of cosmology, the hot big bang model, may think that cosmology raises little of interest about time. As cosmological models are just relativistic spacetimes, time is understood just as it is in relativity theory, and all cosmology adds is a few bells and whistles such as inflation and the big bang and no more. The aim of this chapter is to show that this opinion is not completely right...and may well be dead wrong. In our (...) survey, we show how the hot big bang model invites deep questions about the nature of time, how inflationary cosmology has led to interesting new perspectives on time, and how cosmological speculation continues to entertain dramatically different models of time altogether. Together these issues indicate that the philosopher interested in the nature of time would do well to know a little about modern cosmology. (shrink)
In the science fiction novel Quarantine, Greg Egan imagines a universe where interactions with human observers collapse quantum wavefunctions. Aliens, unable to collapse wavefunctions, tire of being slaughtered by these collapses. In response they erect an impenetrable shield around the solar system, protecting the rest of the universe from human interference and locking humanity into a starless Bubble. When confronting scientific realism and the quantum, many philosophers try to do the theoretical counterpart of this fictional practical strategy. Quantum mechanics is (...) beset with many hard-to-resolve interpretational challenges. Philosophers — appealing to decoherence and coarse-graining — try to put these in a bubble and hope that they can go about their philosophizing as before. My chapter aims to burst this Bubble. (shrink)
As the study of time has flourished in the physical and human sciences, the philosophy of time has come into its own as a lively and diverse area of academic research. Philosophers investigate not just the metaphysics of time, and our experience and representation of time, but the role of time in ethics and action, and philosophical issues in the sciences of time, especially with regard to quantum mechanics and relativity theory. This Handbook presents twenty-three specially written essays by leading (...) figures in their fields: it is the first comprehensive collaborative study of the philosophy of time, and will set the agenda for future work. (shrink)
Suppose that God or a demon informs you of the following future fact: despite recent cosmological evidence, the universe is indeed closed and it will have a ‘final’ instant of time; moreover, at that final moment, all 49 of the world’s Imperial Faberge eggs will be in your bedroom bureau’s sock drawer. You’re absolutely certain that this information is true. All of your other dealings with supernatural powers have demonstrated that they are a trustworthy lot.
This is the table of contents and first chapter of Physics Meets Philosophy at the Planck Scale (Cambridge University Press, 2001), edited by Craig Callender and Nick Huggett. The chapter discusses the question of why there should be a theory of quantum gravity. We tackle arguments that purport to show that the gravitational field *must* be quantized. We then introduce various programs in quantum gravity and discuss areas where quantum gravity and philosophy seem to have something to say to each (...) other. (shrink)
The Past Hypothesis is the claim that the Boltzmann entropy of the universe was extremely low when the universe began. Can we make sense of this claim when *classical* gravitation is included in the system? I first show that the standard rationale for not worrying about gravity is too quick. If the paper does nothing else, my hope is that it gets the problems induced by gravity the attention they deserve in the foundations of physics. I then try to make (...) plausible a very weak claim: that there is a well-defined Boltzmann entropy that *can* increase in *some* interesting self-gravitating systems. More work is needed before we can say whether this claim answers the threat to the standard explanation of entropy increase. (shrink)
Unlike the relativity theory it seeks to replace, causal set theory has been interpreted to leave space for a substantive, though perhaps ‘localized’, form of ‘becoming’. The possibility of fundamental becoming is nourished by the fact that the analogue of Stein’s theorem from special relativity does not hold in causal set theory. Despite this, we find that in many ways, the debate concerning becoming parallels the well-rehearsed lines it follows in the domain of relativity. We present, however, some new twists (...) and challenges. In particular, we show that a novel and exotic notion of becoming is compatible with causal sets. In contrast to the ‘localized’ becoming considered compatible with the dynamics of causal set theory by its advocates, our novel kind of becoming, while not answering to the typical A-theoretic demands, is ‘global’ and objective. (shrink)
This chapter unfolds a central philosophical problem of statistical mechanics. This problem lies in a clash between the Static Probabilities offered by statistical mechanics and the Dynamic Probabilities provided by classical or quantum mechanics. The chapter looks at the Boltzmann and Gibbs approaches in statistical mechanics and construes some of the great controversies in the field — for instance the Reversibility Paradox — as instances of this conflict. It furthermore argues that a response to this conflict is a critical choice (...) that shapes one's understanding of statistical mechanics itself, namely, whether it is to be conceived as a special or fundamental science. The chapter details some of the pitfalls of the latter ‘globalist’ position and seeks defensible ground for a kind of ‘localist’ alternative. (shrink)
A persistent question about the deBroglie–Bohm interpretation of quantum mechanics concerns the understanding of Born’s rule in the theory. Where do the quantum mechanical probabilities come from? How are they to be interpreted? These are the problems of emergence and interpretation. In more than 50 years no consensus regarding the answers has been achieved. Indeed, mirroring the foundational disputes in statistical mechanics, the answers to each question are surprisingly diverse. This paper is an opinionated survey of this literature. While acknowledging (...) the pros and cons of various positions, it defends particular answers to how the probabilities emerge from Bohmian mechanics and how they ought to be interpreted. (shrink)
Philosophy of time, as practiced throughout the last hundred years, is both language- and existence-obsessed. It is language-obsessed in the sense that the primary venue for attacking questions about the nature of time—in sharp contrast to the primary venue for questions about space—has been philosophy of language. Although other areas of philosophy have long recognized that there is a yawning gap between language and the world, the message is spreading slowly in philosophy of time.[1] Since twentieth-century analytic philosophy as a (...) whole often drew metaphysical conclusions from arguments with linguistic premises, philosophy of time perhaps may be forgiven for this transgression. Connected to this language-saturated way of doing philosophy, however, is a hitherto unnoticed obsession, equally unhealthy; namely, an obsession with existence. Existence draws the very lines of debate in philosophy of time: “eternalists” believe past, present and future events all ‘equally’ exist, “possibilists” believe that past and present events exist, and “presentists” believe that only present events enjoy this lofty status.[2] These differences between what events exist as of some other time are supposed to explain the main puzzles surrounding time. This fixation on existence, I submit, is a lingering symptom of the language-saturated days of philosophy of time.[3] And just as linguistic issues such as the ineliminability of tense fail to elucidate time and temporal experience, so too do the “existence debates” fail to explain much of what is interesting about time. Philosophers should have more to say about such a fascinating topic. (shrink)
Are the generalizations of classical equilibrium thermodynamics true of self-gravitating systems? This question has not been addressed from a foundational perspective, but here I tackle it through a study of the “paradoxes” commonly said to afflict such systems. My goals are twofold: (a) to show that the “paradoxes” raise many questions rarely discussed in the philosophical foundations literature, and (b) to counter the idea that these “paradoxes” spell the end for gravitational equilibrium thermodynamics.
For much of this century, philosophers hoped that Einstein’s general theory of relativity would play the role of physician to philosophy. Its development would positively influence the philosophy of methodology and confirmation, and its ontology would answer many traditional philosophical debates—for example, the issue of spacetime substantivalism. In physics, by contrast, the attitude is increasingly that GTR itself needs a physician. The more we learn about GTR the more we discover how odd are the spacetimes that it allows. Not only (...) does GTR permit singularities, naked and clothed, but it allows time travel, topology change, and event and particle horizons, to name but a few of these oddities. Rather than revel in the riches of the theory, however, many physicists seek to rule out one or more of the above “pathologies” on the grounds that they are “physically unreasonable.” Thus contemporary researchers hawk various “cures” for the “illnesses” of GTR: among them, Chronology Protection to ensure against time travel, Cosmic Censorship for naked singularities, Inflation for horizons, and so on. The physics of these illnesses and cures, and the problems they engender, are the source of much controversy in the physics literature. Philosophers have largely neglected it. But clearly the subject needs philosophers of physics to determine whether the patient is genuinely ailing, and if so, to sift the real antidotes from the snake oil. (shrink)
Many believe that quantum mechanics makes the world hospitable to the tensed theory of time. Quantum mechanics is said to rescue the significance of the present moment, the mutability of the future and possibly even the whoosh of time’s flow. It allegedly does so in two different ways: by making a preferred foliation of spacetime into space and time scientifically respectable, and by wavefunction collapse injecting temporal ‘becoming’ into the world. The aim of this paper is to show that the (...) reasoning underlying these claims is wishful thinking. Against the first claim I develop what I call the “coordination problem” for tensers. The upshot of this problem is that if tensers escape the threat of relativity, they do so only by embracing conflict with the branch of physics they believed saved them, quantum mechanics. I then step back from the fray and examine some methodological issues, concluding that scientific methodology will always be “against” tenses as they are currently conceived. The Appendix deals with the confused tangle of issues linking wavefunction collapse to an open future. (shrink)
This paper considers the possibility that nonrelativistic quantum mechanics tells us that Nature cares about time reversal. In a classical world we have a fundamentally reversible world that appears irreversible at higher levels, e.g., the thermodynamic level. But in a quantum world we see, if I am correct, a fundamentally irreversible world that appears reversible at higher levels, e.g., the level of classical mechanics. I consider two related symmetries, time reversal invariance and what I call ‘Wigner reversal invariance.’ Violation of (...) the first is interesting, for not only would it fly in the face of the usual story about temporal symmetry, but it also appears to imply (as I’ll explain) that time is ‘handed’, or as some have misleadingly said in the literature, ‘anisotropic’. Violation of the second is, as I hope to show, even more interesting. The paper also contains a discussion of two mostly neglected topics: what it means to say time is handed and what warrants such an attribution to time. (shrink)
A persistent question about the deBroglie–Bohm interpretation of quantum mechanics concerns the understanding of Born’s rule in the theory. Where do the quantum mechanical probabilities come from? How are they to be interpreted? These are the problems of emergence and interpretation. In more than 50 years no consensus regarding the answers has been achieved. Indeed, mirroring the foundational disputes in statistical mechanics, the answers to each question are surprisingly diverse. This paper is an opinionated survey of this literature. While acknowledging (...) the pros and cons of various positions, it defends particular answers to how the probabilities emerge from Bohmian mechanics and how they ought to be interpreted. (shrink)
Was the first book to examine the exciting area of overlap between philosophy and quantum mechanics with chapters by leading experts from around the world.
In Philip K. Dick’s Counter-Clock World the direction of time flips in 1986, putting the Earth into what its inhabitants call the ‘Hogarth Phase’. Named after the scientist who predicted that ‘time’s arrow' would change direction, the Hogarth Phase is a period in which entropy decreases instead of increases. During this time the dead call from their graves to be excavated, people clean their lungs by ‘smoking’ stubs that grow into mature cigarettes, coffee separates from cream, and so on. Although (...) such reversals may be familiar from works of fiction, we are utterly unfamiliar with them in experience. The processes of nature behave in a temporally asymmetric manner. Once the cream mixes with the coffee, it stays that way, never to return to its original separated state. Neither cigarettes nor people ever fully reconstitute themselves. This kind of asymmetric behaviour is ubiquitous in thermodynamic, radiative, and quantum mechanical phenomena. But we also find our common-sense impression ofthe world painted with temporally asymmetric concepts. Time feels like it is ‘f|owing’ forward and causation appears to be an asymmetric relation. These phenomena and impressions stand in sharp contrast with the world as perceived through eyes tutored by modem science. Spacetime, rather than.. (shrink)
In a classical mechanical world, the fundamental laws of nature are reversible. The laws of nature treat the past and future as mirror images of each other. Temporally asymmetric phenomena are ultimately said to arise from initial conditions. But are the laws of nature also reversible in a quantum world? This paper argues that they are not, that time in a quantum world prefers a particular 'hand' or ordering. I argue, first, that the probabilistic algorithm used in the theory picks (...) out a preferred direction of time for almost all interpretations of the theory, and second, that contrary to the received wisdom the Schr?dinger evolution is also irreversible. The status of Wigner reversal invariance is then discussed. I conclude that the quantum world is fundamentally irreversible, but manages to appear (thanks to Wigner reversal invariance) reversible at the classical level. (shrink)
Exponential discounted utility theory provides the normative standard for future discounting as it is employed throughout the social sciences. Tracing the justification for this standard through economics, philosophy and psychology, I’ll make what I believe is the best case one can for it, showing how a non-arbitrariness assumption and a dominance argument together imply that discounting ought to be exponential. Ultimately, however, I don’t find the case compelling, as I believe it is deeply flawed. Non-exponential temporal discounting is often rational–indeed, (...) the paragon of rationality. If this is correct, it’s an important point when considering policy interventions. Instead of trying to “fix” non-exponetial discounting because it is irrational and associated with negative life outcomes, we might instead focus attention on why the conditions obtain that make such discounting rational. (shrink)
This paper searches for an explicit expression of the so-called problem of the direction of time. I argue that the traditional version of the problem is an artifact of a mistaken view in the foundations of statistical mechanics, and that to the degree it is a problem, it is really one general to all the special sciences. I then search the residue of the traditional problem for any remaining difficulty particular to time's arrow and find that there is a special (...) puzzle for some types of scientific realist. (shrink)
In a classical mechanical world, the fundamental laws of nature are reversible. The laws of nature treat the past and future as mirror images of each other. Temporally asymmetric phenomena are ultimately said to arise from initial conditions. But are the laws of nature also reversible in a quantum world? This paper argues that they are not, that time in a quantum world prefers a particular 'hand' or ordering. I argue, first, that the probabilistic algorithm used in the theory picks (...) out a preferred direction of time for almost all interpretations of the theory, and second, that contrary to the received wisdom the Schr?dinger evolution is also irreversible. The status of Wigner reversal invariance is then discussed. I conclude that the quantum world is fundamentally irreversible, but manages to appear reversible at the classical level. (shrink)
The quantum gravity program seeks a theory that handles quantum matter fields and gravity consistently. But is such a theory really required and must it involve quantizing the gravitational field? We give reasons for a positive answer to the first question, but dispute a widespread contention that it is inconsistent for the gravitational field to be classical while matter is quantum. In particular, we show how a popular argument (Eppley and Hannah 1997) falls short of a no-go theorem, and discuss (...) possible counterexamples. Important issues in the foundations of physics are shown to bear crucially on all these considerations. (shrink)
From Kant’s first published work to recent articles in the physics literature, philosophers and physicists have long sought an answer to the question, why does space have three dimensions. In this paper, I will flesh out Kant’s claim with a brief detour through Gauss’ law. I then describe Büchel’s version of the common argument that stable orbits are possible only if space is three-dimensional. After examining objections by Russell and van Fraassen, I develop three original criticisms of my own. These (...) criticisms are relevant to both historical and contemporary proofs of the dimensionality of space (in particular, a recent one by Burgbacher, F. Lämmerzahl, C., and Macias). In general I argue that modern “proofs” of the dimensionality of space have gone off track. (shrink)
is the thesis that everything supervenes upon the spatiotemporal distribution of local intrinsic qualities. A recent threat to HS, originating in thought experiments by Armstrong and Kripke, claims that the mere possibility of rotating homogeneous discs proves HS false. I argue that the rotating disc argument (RDA) fails. If I am right, Humeans needn't abandon or alter HS to make sense of rotating homogeneous discs. Homogeneous discs, as necessarily understood by RDA, are not the sorts of things in which we (...) should believe. These discs do not belong in our ontology - not because there is a problem with their homogeneity, but (surprisingly) because there is a problem with their rotation. RDA is shown to be a kind of parody of classic arguments for spatial substantivalism. (shrink)
With an eye on developing a quantum theory of gravity, many physicists have recently searched for quantum challenges to the equivalence principle of general relativity. However, as historians and philosophers of science are well aware, the principle of equivalence is not so clear. When clarified, we think quantum tests of the equivalence principle won’t yield much. The problem is that the clash/not-clash is either already evident or guaranteed not to exist. Nonetheless, this work does help teach us what it means (...) for a theory to be geometric. (shrink)
This is my commentary on Jonathan Schaffer's paper "Evidence for Fundamentality?”; both the paper and comments were presented at the Pacific APA, San Francisco, March 2001. Schaffer argues against the view that there is an ultimate fundamental level to the world. Seeing that quarks and leptons may have an infinite hierarchy of constituents, he claims, “empowers and dignifies the whole of nature” (15). Like Kant he holds that there are as good reasons for believing matter infinitely divisible as composed of (...) fundamental simples. I’m afraid that Schaffer’s provocative arguments have not convinced me. In the paper, I criticize the idea that fundamentalism 'weakens' and 'denigrates' the whole of nature and try to show that an infinite hierarchy can not do the work Schaffer needs it to. I then argue that we should not in fact be agnostic between the two rival hypotheses. (shrink)