Ergodic theory, interpretations of probability and the foundations of statistical mechanics

Abstract

The traditional use of ergodic theory in the foundations of equilibrium statistical mechanics is that it provides a link between thermodynamic observables and microcanonical probabilities. First of all, the ergodic theorem demonstrates the equality of microcanonical phase averages and infinite time averages (albeit for a special class of systems, and up to a measure zero set of exceptions). Secondly, one argues that actual measurements of thermodynamic quantities yield time averaged quantities, since measurements take a long time. The combination of these two points is held to be an explanation why calculating microcanonical phase averages is a successful algorithm for predicting the values of thermodynamic observables. It is also well-known that this account is problematic.

This survey intends to show that ergodic theory nevertheless may have important roles to play, and it explores three other uses of ergodic theory. Particular attention is paid, firstly, to the relevance of specific interpretations of probability, and secondly, to the way in which the concern with systems in thermal equilibrium is translated into probabilistic language. With respect to the latter point, it is argued that equilibrium should not be represented as a stationary probability distribution as is standardly done; instead, a weaker definition is presented.

Download options

PhilArchive



    Upload a copy of this work     Papers currently archived: 72,805

External links

Setup an account with your affiliations in order to access resources via your University's proxy server

Through your library

Analytics

Added to PP
2009-01-28

Downloads
286 (#38,879)

6 months
1 (#386,031)

Historical graph of downloads
How can I increase my downloads?

Author's Profile

Janneke van Dis
Utrecht University

Citations of this work

What Are the New Implications of Chaos for Unpredictability?Charlotte Werndl - 2009 - British Journal for the Philosophy of Science 60 (1):195-220.
Entropy - A Guide for the Perplexed.Roman Frigg & Charlotte Werndl - 2011 - In Claus Beisbart & Stephan Hartmann (eds.), Probabilities in Physics. Oxford University Press. pp. 115-142.
Time in Thermodynamics.Jill North - 2011 - In Criag Callender (ed.), The Oxford Handbook of Philosophy of Time. Oxford University Press. pp. 312--350.

View all 16 citations / Add more citations