The study tests the hypothesis that conditional probability judgments can be influenced by causal links between the target event and the evidence even when the statistical relations among variables are held constant. Three experiments varied the causal structure relating three variables and found that (a) the target event was perceived as more probable when it was linked to evidence by a causal chain than when both variables shared a common cause; (b) predictive chains in which evidence is a cause of (...) the hypothesis gave rise to higher judgments than diagnostic chains in which evidence is an effect of the hypothesis; and (c) direct chains gave rise to higher judgments than indirect chains. A Bayesian learning model was applied to our data but failed to explain them. An explanation-based hypothesis stating that statistical information will affect judgments only to the extent that it changes beliefs about causal structure is consistent with the results. (shrink)
We used a new method to assess how people can infer unobserved causal structure from patterns of observed events. Participants were taught to draw causal graphs, and then shown a pattern of associations and interventions on a novel causal system. Given minimal training and no feedback, participants in Experiment 1 used causal graph notation to spontaneously draw structures containing one observed cause, one unobserved common cause, and two unobserved independent causes, depending on the pattern of associations and interventions they saw. (...) We replicated these findings with less‐informative training (Experiments 2 and 3) and a new apparatus (Experiment 3) to show that the pattern of data leads to hidden causal inferences across a range of prior constraints on causal knowledge. (shrink)
(1999). Reviews: Open Boundaries: Creating Business Innovation through Complexity, Howard Sherman and Ron Schultz. Emergence: Vol. 1, No. 2, pp. 138-144.