When people want to identify the causes of an event, assign credit or blame, or learn from their mistakes, they often reflect on how things could have gone differently. In this kind of reasoning, one considers a counterfactual world in which some events are different from their real-world counterparts and considers what else would have changed. Researchers have recently proposed several probabilistic models that aim to capture how people do (or should) reason about counterfactuals. We present a new model and (...) show that it accounts better for human inferences than several alternative models. Our model builds on the work of Pearl (2000), and extends his approach in a way that accommodates backtracking inferences and that acknowledges the difference between counterfactual interventions and counterfactual observations. We present six new experiments and analyze data from four experiments carried out by Rips (2010), and the results suggest that the new model provides an accurate account of both mean human judgments and the judgments of individuals. (shrink)
If Bayesian Fundamentalism existed, Jones & Love's (J&L's) arguments would provide a necessary corrective. But it does not. Bayesian cognitive science is deeply concerned with characterizing algorithms and representations, and, ultimately, implementations in neural circuits; it pays close attention to environmental structure and the constraints of behavioral data, when available; and it rigorously compares multiple models, both within and across papers. J&L's recommendation of Bayesian Enlightenment corresponds to past, present, and, we hope, future practice in Bayesian cognitive science.
Learning to understand a single causal system can be an achievement, but humans must learn about multiple causal systems over the course of a lifetime. We present a hierarchical Bayesian framework that helps to explain how learning about several causal systems can accelerate learning about systems that are subsequently encountered. Given experience with a set of objects, our framework learns a causal model for each object and a causal schema that captures commonalities among these causal models. The schema organizes the (...) objects into categories and specifies the causal powers and characteristic features of these categories and the characteristic causal interactions between categories. A schema of this kind allows causal models for subsequent objects to be rapidly learned, and we explore this accelerated learning in four experiments. Our results confirm that humans learn rapidly about the causal powers of novel objects, and we show that our framework accounts better for our data than alternative models of causal learning. (shrink)
Rogers & McClelland (R&M) criticize models that rely on structured representations such as categories, taxonomic hierarchies, and schemata, but we suggest that structured models can account for many of the phenomena that they describe. Structured approaches and parallel distributed processing (PDP) approaches operate at different levels of analysis, and may ultimately be compatible, but structured models seem more likely to offer immediate insight into many of the issues that R&M discuss.