Results for 'RNA interference'

1000+ found
Order:
  1.  5
    Gene silencing in non‐model insects: Overcoming hurdles using symbiotic bacteria for trauma‐free sustainable delivery of RNA interference.Miranda Whitten & Paul Dyson - 2017 - Bioessays 39 (3).
    Insight into animal biology and development provided by classical genetic analysis of the model organism Drosophila melanogaster was an incentive to develop advanced genetic tools for this insect. But genetic systems for the over one million other known insect species are largely undeveloped. With increasing information about insect genomes resulting from next generation sequencing, RNA interference is now the method of choice for reverse genetics, although it is constrained by the means of delivery of interfering RNA. A recent advance (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  2.  5
    Endogenous inhibitors of RNA interference in Caenorhabditis elegans.Lisa Timmons - 2004 - Bioessays 26 (7):715-718.
    In eukaryotes, double‐stranded RNAs (dsRNAs) or short, interfering dsRNAs (siRNAs) can reduce the accumulation of a sequence‐related mRNA, often resulting in a loss‐of‐function phenotype—a process termed RNA interference (RNAi). Unfortunately, some mRNAs are resistant to the effects of dsRNA. Experiments designed to unravel RNAi mechanisms in Caenorhabditis elegans have led to the identification of two worm proteins, RRF‐31,2 and, now, ERI‐1,3 that can inhibit RNAi responses. Animals defective in either protein can display enhanced RNAi phenotypes for mRNAs that were (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  3.  8
    Mitochondrial uncoupling proteins regulate angiotensin‐converting enzyme expression: crosstalk between cellular and endocrine metabolic regulators suggested by RNA interference and genetic studies.Sukhbir S. Dhamrait, Cecilia Maubaret, Ulrik Pedersen-Bjergaard, David J. Brull, Peter Gohlke, John R. Payne, Michael World, Birger Thorsteinsson, Steve E. Humphries & Hugh E. Montgomery - 2016 - Bioessays 38 (S1):107-118.
    Uncoupling proteins (UCPs) regulate mitochondrial function, and thus cellular metabolism. Angiotensin‐converting enzyme (ACE) is the central component of endocrine and local tissue renin–angiotensin systems (RAS), which also regulate diverse aspects of whole‐body metabolism and mitochondrial function (partly through altering mitochondrial UCP expression). We show that ACE expression also appears to be regulated by mitochondrial UCPs. In genetic analysis of two unrelated populations (healthy young UK men and Scandinavian diabetic patients) serum ACE (sACE) activity was significantly higher amongst UCP3‐55C (rather than (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  4.  9
    Small mitochondrial RNAs as mediators of nuclear gene regulation, and potential implications for human health.Andrea Pozzi & Damian K. Dowling - 2021 - Bioessays 43 (6):2000265.
    Much research has focused on the effects of pathogenic mitochondrial mutations on health. Notwithstanding, the mechanisms regulating the link between these mutations and their effects remain elusive in several cases. Here, we propose that certain mitochondrial mutations may disrupt function of a set of mitochondrial‐transcribed small RNAs, perturbing communication between mitochondria and nucleus, leading to disease. Our hypothesis synthesises two lines of supporting evidence. First, several mitochondrial mutations cannot be directly linked to effects on energy production or protein synthesis. Second, (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  5.  8
    Small RNA research and the scientific repertoire: a tale about biochemistry and genetics, crops and worms, development and disease.Sophie Juliane Veigl - 2021 - History and Philosophy of the Life Sciences 43 (1):1-25.
    The discovery of RNA interference in 1998 has made a lasting impact on biological research. Identifying the regulatory role of small RNAs changed the modes of molecular biological inquiry as well as biologists' understanding of genetic regulation. This article examines the early years of small RNA biology's success story. I query which factors had to come together so that small RNA research came into life in the blink of an eye. I primarily look at scientific repertoires as facilitators of (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   7 citations  
  6.  8
    Inheritance and maintenance of small RNA‐mediated epigenetic effects.Piergiuseppe Quarato, Meetali Singh, Loan Bourdon & Germano Cecere - 2022 - Bioessays 44 (6):2100284.
    Heritable traits are predominantly encoded within genomic DNA, but it is now appreciated that epigenetic information is also inherited through DNA methylation, histone modifications, and small RNAs. Several examples of transgenerational epigenetic inheritance of traits have been documented in plants and animals. These include even the inheritance of traits acquired through the soma during the life of an organism, implicating the transfer of epigenetic information via the germline to the next generation. Small RNAs appear to play a significant role in (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  7.  8
    The double-stranded RNA binding domain of human Dicer functions as a nuclear localization signal.Michael Doyle, Lukas Badertscher, Lukasz Jaskiewicz, Stephan Güttinger, Sabine Jurado, Tabea Hugenschmidt, Ulrike Kutay & Witold Filipowicz - unknown
    Dicer is a key player in microRNA (miRNA) and RNA interference (RNAi) pathways, processing miRNA precursors and doublestranded RNA into ~21-nt-long products ultimately triggering sequence-dependent gene silencing. Although processing of substrates in vertebrate cells occurs in the cytoplasm, there is growing evidence suggesting Dicer is also present and functional in the nucleus. To address this possibility, we searched for a nuclear localization signal (NLS) in human Dicer and identified its C-terminal double-stranded RNA binding domain (dsRBD) as harboring NLS activity. (...)
    No categories
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  8.  15
    RNAi in X inactivation: contrasting findings on the role of interference.Satya K. Kota - 2009 - Bioessays 31 (12):1280-1283.
    X inactivation is the process that brings about the dosage equivalence of X‐linked genes in females to that of males. This complex process initiated at a very early stage of female embryonic development is orchestrated by long non‐coding RNAs transcribed in both sense and antisense orientation. Recent studies present contradicting evidence for the role of small RNAs and RNase III enzyme Dicer in the X inactivation process. In this review, I discuss these results in the overall perspective of X inactivation (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  9.  5
    Control of developmental timing by small temporal RNAs: a paradigm for RNA‐mediated regulation of gene expression.Diya Banerjee & Frank Slack - 2002 - Bioessays 24 (2):119-129.
    Heterochronic genes control the timing of developmental programs. In C. elegans, two key genes in the heterochronic pathway, lin-4 and let-7, encode small temporally expressed RNAs (stRNAs) that are not translated into protein. These stRNAs exert negative post-transcriptional regulation by binding to complementary sequences in the 3′ untranslated regions of their target genes. stRNAs are transcribed as longer precursor RNAs that are processed by the RNase Dicer/DCR-1 and members of the RDE-1/AGO1 family of proteins, which are better known for their (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  10.  5
    Deubiquitinating Enzymes in Model Systems and Therapy: Redundancy and Compensation Have Implications.Sarah Zachariah & Douglas A. Gray - 2019 - Bioessays 41 (11):1900112.
    The multiplicity of deubiquitinating enzymes (DUBs) encoded by vertebrate genomes is partly attributable to whole genome duplication events that occurred early in chordate evolution. By surveying the literature for the largest family of DUBs (the ubiquitin-specific proteases), extensive functional redundancy for duplicated genes has been confirmed as opposed to singletons. Dramatically conflicting results have been reported for loss of function studies conducted through RNA interference as opposed to inactivating mutations, but the contradictory findings can be reconciled by a recently (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  11.  2
    Surveillance of Retroelement Expression and Nucleic‐Acid Immunity by Histone Methyltransferase SETDB1.Yong-Kook Kang - 2018 - Bioessays 40 (9):1800058.
    In human cancers, histone methyltransferase SETDB1 (SET domain, bifurcated 1) is frequently overexpressed but its significance in carcinogenesis remains elusive. A recent study shows that SETDB1 downregulation induces de‐repression of retroelements and innate immunity in cancer cells. The possibility of SETDB1 functioning as a surveillant of retroelement expression is discussed in this study: the cytoplasmic presence of retroelement‐derived nucleic acids (RdNAs) drives SETDB1 into the nucleus by the RNA‐interference route, rendering the corresponding retroelement transcriptionally inert. These RdNAs could, therefore, (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  12.  11
    Transposable elements and an epigenetic basis for punctuated equilibria.David W. Zeh, Jeanne A. Zeh & Yoichi Ishida - 2009 - Bioessays 31 (7):715-726.
    Evolution is frequently concentrated in bursts of rapid morphological change and speciation followed by long‐term stasis. We propose that this pattern of punctuated equilibria results from an evolutionary tug‐of‐war between host genomes and transposable elements (TEs) mediated through the epigenome. According to this hypothesis, epigenetic regulatory mechanisms (RNA interference, DNA methylation and histone modifications) maintain stasis by suppressing TE mobilization. However, physiological stress, induced by climate change or invasion of new habitats, disrupts epigenetic regulation and unleashes TEs. With their (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   7 citations  
  13.  5
    Exaptive origins of regulated mRNA decay in eukaryotes.Fursham M. Hamid & Eugene V. Makeyev - 2016 - Bioessays 38 (9):830-838.
    Eukaryotic gene expression is extensively controlled at the level of mRNA stability and the mechanisms underlying this regulation are markedly different from their archaeal and bacterial counterparts. We propose that two such mechanisms, nonsense‐mediated decay (NMD) and motif‐specific transcript destabilization by CCCH‐type zinc finger RNA‐binding proteins, originated as a part of cellular defense against RNA pathogens. These branches of the mRNA turnover pathway might have been used by primeval eukaryotes alongside RNA interference to distinguish their own messages from those (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  14.  7
    Biological models of security for virus propagation in computer networks.Sanjay Goel & Stephen F. S. F. Bush - 2004 - Login, December 29 (6):49--56.
    This aricle discusses the similarity between the propagation of pathogens (viruses and worms) on computer networks and the proliferation of pathogens in cellular organisms (organisms with genetic material contained within a membrane-encased nucleus). It introduces several biological mechanisms which are used in these organisms to protect against such pathogens and presents security models for networked computers inspired by several biological paradigms, including genomics (RNA interference), proteomics (pathway mapping), and physiology (immune system). In addition, the study of epidemiological models for (...)
    Direct download  
     
    Export citation  
     
    Bookmark  
  15.  2
    Beta‐catenin and axis formation in planarians.Hans Meinhardt - 2009 - Bioessays 31 (1):5-9.
    In three recent articles it was shown that β‐catenin is crucial for the establishment and the maintenance of the overall polarity and especially for the character ‘posterior’ in planarians. If the transcription of the β‐catenin gene was silenced by RNA interference, the overall polarity is lost, and in regenerating fragments a posterior blastema displays anterior characters by forming eyes and anterior ganglia. An attempt is made to integrate these new data, well‐known older observations, and observations from other regenerating systems (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  16.  5
    Invertebrate models of spinal muscular atrophy: Insights into mechanisms and potential therapeutics.Stuart J. Grice, James N. Sleigh, Ji-Long Liu & David B. Sattelle - 2011 - Bioessays 33 (12):956-965.
    Invertebrate genetic models with their tractable neuromuscular systems are effective vehicles for the study of human nerve and muscle disorders. This is exemplified by insights made into spinal muscular atrophy (SMA) using the fruit fly Drosophila melanogaster and the nematode worm Caenorhabditis elegans. For speed and economy, these invertebrates offer convenient, whole‐organism platforms for genetic screening as well as RNA interference (RNAi) and chemical library screens, permitting the rapid testing of hypotheses related to disease mechanisms and the exploration of (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  17.  2
    Transfer and functional consequences of dietary microRNAs in vertebrates: Concepts in search of corroboration.Kenneth W. Witwer & Kendal D. Hirschi - 2014 - Bioessays 36 (4):394-406.
    If validated, diet‐derived foreign microRNA absorption and function in consuming vertebrates would drastically alter our understanding of nutrition and ecology. RNA interference (RNAi) mechanisms of Caenorhabditis elegans are enhanced by uptake of environmental RNA and amplification and systemic distribution of RNAi effectors. Therapeutic exploitation of RNAi in treating human disease is difficult because these accessory processes are absent or diminished in most animals. A recent report challenged multiple paradigms, suggesting that ingested microRNAs (miRNAs) are transferred to blood, accumulate in (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  18.  3
    Comparative insect developmental genetics: phenotypes without mutants.Rob Denell & Teresa Shippy - 2001 - Bioessays 23 (5):379-382.
    The last decade has seen a dramatic increase in interest in the extent to which morphological evolution depends on changes in regulatory pathways. Insects provide a fertile ground for study because of their diversity and our high level of understanding of the genetic regulation of development in Drosophila melanogaster. However, comparable genetic approaches are presently possible in only a small number of non‐Drosophilid insects. In a recent paper, Hughes and Kaufman(1) have used a new methodology, RNA interference, in the (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  19.  3
    Heterochromatin tells CENP‐A where to go.Mickaël Durand-Dubief & Karl Ekwall - 2008 - Bioessays 30 (6):526-529.
    The centromere is the region of the chromosome where the kinetochore forms. Kinetochores are the attachment sites for spindle microtubules that separate duplicated chromosomes in mitosis and meiosis. Kinetochore formation depends on a special chromatin structure containing the histone H3 variant CENP‐A. The epigenetic mechanisms that maintain CENP‐A chromatin throughout the cell cycle have been studied extensively but little is known about the mechanism that targets CENP‐A to naked centromeric DNA templates. In a recent report published in Science,1 such de (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  20.  15
    Embodied anomaly resolution in molecular genetics: A case study of RNAi.John J. Sung - 2008 - Foundations of Science 13 (2):177-193.
    Scientific anomalies are observations and facts that contradict current scientific theories and they are instrumental in scientific theory change. Philosophers of science have approached scientific theory change from different perspectives as Darden (Theory change in science: Strategies from Mendelian genetics, 1991) observes: Lakatos (In: Lakatos, Musgrave (eds) Criticism and the growth of knowledge, 1970) approaches it as a progressive “research programmes” consisting of incremental improvements (“monster barring” in Lakatos, Proofs and refutations: The logic of mathematical discovery, 1976), Kuhn (The structure (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  21.  2
    Mammalian synthetic biology – from tools to therapies.Dominique Aubel & Martin Fussenegger - 2010 - Bioessays 32 (4):332-345.
    Mammalian synthetic biology holds the promise of providing novel therapeutic strategies, and the first success stories are beginning to be reported. Here we focus on the latest generation of mammalian transgene control devices, highlight state‐of‐the‐art synthetic gene network design, and cover prototype therapeutic circuits. These will have an impact on future gene‐ and cell‐based therapies and help bring drug discovery into a new era. The inventory of biological parts that are essential for life on this planet is becoming increasingly complete. (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  22.  3
    Cryo‐electron microscopy as an investigative tool: the ribosome as an example.Joachim Frank - 2001 - Bioessays 23 (8):725-732.
    Cryo‐electron microscopy allows the visualization of macromolecules in their native state. Combined with techniques of three‐dimensional reconstruction, cryo‐EM images of single molecules can be used to study macromolecular interactions. The ribosome, a large RNA–protein complex with multiple binding interactions, is an excellent test case illustrating the power of these new techniques. Conformational changes during the binding of tRNA and protein factors to the ribosome can now be studied without the interference of crystal packing. Now that the first X‐ray structures (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  23. The double solution of the theory of relativity.Julius Järnåker - 1970 - [Uppsala,: Almqvist & Wiksell.
     
    Export citation  
     
    Bookmark  
  24.  5
    ʻAql-i surkh: sharḥ va taʼvīl-i dāstānʹhā-yi ramzī-i Suhravardī.Taqī Pūrnāmdārīyān - 2011 - Tihrān: Intishārāt-i Sukhan. Edited by Yaḥyá ibn Ḥabash Suhrawardī.
  25. Cad fúinne, mar sin?: what of us, then?Colm Ó Tórna - 2019 - [Dublin]: Foilsithe ag Teangscéal.
     
    Export citation  
     
    Bookmark  
  26. Quo Vanis, a Chreidmhigh?Colm Ó Tórna - 2015 - Binn Eadair, Baile Átha Cliath: Coiscéim.
     
    Export citation  
     
    Bookmark  
  27.  4
    Are RNA Viruses Vestiges of an RNA World?Susie Fisher - 2010 - Journal for General Philosophy of Science / Zeitschrift für Allgemeine Wissenschaftstheorie 41 (1):121-141.
    This paper follows the circuitous path of theories concerning the origins of viruses from the early years of the twentieth century until the present, considering RNA viruses in particular. I focus on three periods during which new understandings of the nature of viruses guided the construction and reconstruction of origin hypotheses. During the first part of the twentieth century, viruses were mostly viewed from within the framework of bacteriology and the discussion of origin centered on the “degenerative” or the “retrograde (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   3 citations  
  28.  4
    RNAs, Phase Separation, and Membrane‐Less Organelles: Are Post‐Transcriptional Modifications Modulating Organelle Dynamics?Aleksej Drino & Matthias R. Schaefer - 2018 - Bioessays 40 (12):1800085.
    Membranous organelles allow sub‐compartmentalization of biological processes. However, additional subcellular structures create dynamic reaction spaces without the need for membranes. Such membrane‐less organelles (MLOs) are physiologically relevant and impact development, gene expression regulation, and cellular stress responses. The phenomenon resulting in the formation of MLOs is called liquid–liquid phase separation (LLPS), and is primarily governed by the interactions of multi‐domain proteins or proteins harboring intrinsically disordered regions as well as RNA‐binding domains. Although the presence of RNAs affects the formation and (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  29.  8
    Noncoding RNA‐guided recruitment of transcription factors: A prevalent but undocumented mechanism?Nara Lee & Joan A. Steitz - 2015 - Bioessays 37 (9):936-941.
    High‐fidelity binding of transcription factors (TFs) to DNA target sites is fundamental for proper regulation of cellular processes, as well as for the maintenance of cell identity. Recognition of cognate binding motifs in the genome is attributed by and large to the DNA binding domains of TFs. As an additional mode of conferring binding specificity, noncoding RNAs (ncRNAs) have been proposed to assist associated TFs in finding their binding sites by interacting with either DNA or RNA in the vicinity of (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  30.  8
    RNA assemblages orchestrate complex cellular processes.Finn Cilius Nielsen, Heidi Theil Hansen & Jan Christiansen - 2016 - Bioessays 38 (7):674-681.
    Eukaryotic mRNAs are monocistronic, and therefore mechanisms exist that coordinate the synthesis of multiprotein complexes in order to obtain proper stoichiometry at the appropriate intracellular locations. RNA‐binding proteins containing low‐complexity sequences are prone to generate liquid droplets via liquid‐liquid phase separation, and in this way create cytoplasmic assemblages of functionally related mRNAs. In a recent iCLIP study, we showed that the Drosophila RNA‐binding protein Imp, which exhibits a C‐terminal low‐complexity sequence, increases the formation of F‐actin by binding to 3′ untranslated (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark  
  31.  4
    RNA at DNA Double‐Strand Breaks: The Challenge of Dealing with DNA:RNA Hybrids.Judit Domingo-Prim, Franziska Bonath & Neus Visa - 2020 - Bioessays 42 (5):1900225.
    RNA polymerase II is recruited to DNA double‐strand breaks (DSBs), transcribes the sequences that flank the break and produces a novel RNA type that has been termed damage‐induced long non‐coding RNA (dilncRNA). DilncRNAs can be processed into short, miRNA‐like molecules or degraded by different ribonucleases. They can also form double‐stranded RNAs or DNA:RNA hybrids. The DNA:RNA hybrids formed at DSBs contribute to the recruitment of repair factors during the early steps of homologous recombination (HR) and, in this way, contribute to (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  32.  79
    RNA’s Role in the Origins of Life: An Agentic ‘Manager’, or Recipient of ‘Off-loaded’ Constraints?John E. Stewart - 2021 - Biosemiotics 14 (3):643-650.
    In his Target Article, Terrence Deacon develops simple models that assist in understanding the role of RNA in the origins of life. However, his models fail to adequately represent an important evolutionary dynamic. Central to this dynamic is the selection that impinges on RNA molecules in the context of their association with proto-metabolisms. This selection shapes the role of RNA in the emergence of life. When this evolutionary dynamic is appropriately taken into account, it predicts a role for RNA that (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  33.  13
    RNA‐protein interactions: Central players in coordination of regulatory networks.Alexandros Armaos, Elsa Zacco, Natalia Sanchez de Groot & Gian Gaetano Tartaglia - 2021 - Bioessays 43 (2):2000118.
    Changes in the abundance of protein and RNA molecules can impair the formation of complexes in the cell leading to toxicity and death. Here we exploit the information contained in protein, RNA and DNA interaction networks to provide a comprehensive view of the regulation layers controlling the concentration‐dependent formation of assemblies in the cell. We present the emerging concept that RNAs can act as scaffolds to promote the formation ribonucleoprotein complexes and coordinate the post‐transcriptional layer of gene regulation. We describe (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  34.  22
    Masks, Interferers, Finks, and Mimickers: A Novel Approach.Michele Paolini Paoletti - 2021 - Theoria 87 (3):813-836.
    Masks, interferers, finks, reverse finks, and mimickers are troublesome for powers metaphysics insofar as the latter concedes that there are powers with essential stimuli/activation conditions. In this article, I aim at offering a novel approach for solving this problem. In Section 1, I shall present the problem; and in Section 2, I shall briefly show how it also arises within non‐reductive views of powers. Subsequently, in Section 3, I shall examine the failure of the ceteris paribus solution. The pars construens (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   3 citations  
  35.  11
    RNA regulation of epigenetic processes.John S. Mattick, Paulo P. Amaral, Marcel E. Dinger, Tim R. Mercer & Mark F. Mehler - 2009 - Bioessays 31 (1):51-59.
    There is increasing evidence that dynamic changes to chromatin, chromosomes and nuclear architecture are regulated by RNA signalling. Although the precise molecular mechanisms are not well understood, they appear to involve the differential recruitment of a hierarchy of generic chromatin modifying complexes and DNA methyltransferases to specific loci by RNAs during differentiation and development. A significant fraction of the genome-wide transcription of non-protein coding RNAs may be involved in this process, comprising a previously hidden layer of intermediary genetic information that (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   4 citations  
  36.  8
    RNA editing: a driving force for adaptive evolution?Willemijn M. Gommans, Sean P. Mullen & Stefan Maas - 2009 - Bioessays 31 (10):1137-1145.
    Genetic variability is considered a key to the evolvability of species. The conversion of an adenosine (A) to inosine (I) in primary RNA transcripts can result in an amino acid change in the encoded protein, a change in secondary structure of the RNA, creation or destruction of a splice consensus site, or otherwise alter RNA fate. Substantial transcriptome and proteome variability is generated by A‐to‐I RNA editing through site‐selective post‐transcriptional recoding of single nucleotides. We posit that this epigenetic source of (...)
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark   3 citations  
  37.  7
    Noncoding RNAs and chronic inflammation: Micro‐managing the fire within.Margaret Alexander & Ryan M. O'Connell - 2015 - Bioessays 37 (9):1005-1015.
    Inflammatory responses are essential for the clearance of pathogens and the repair of injured tissues; however, if these responses are not properly controlled chronic inflammation can occur. Chronic inflammation is now recognized as a contributing factor to many age‐associated diseases including metabolic disorders, arthritis, neurodegeneration, and cardiovascular disease. Due to the connection between chronic inflammation and these diseases, it is essential to understand underlying mechanisms behind this process. In this review, factors that contribute to chronic inflammation are discussed. Further, we (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark  
  38.  9
    RNA Decay Factor UPF1 Promotes Protein Decay: A Hidden Talent.Terra-Dawn M. Plank & Miles F. Wilkinson - 2018 - Bioessays 40 (1):1700170.
    The RNA-binding protein, UPF1, is best known for its central role in the nonsense-mediated RNA decay pathway. Feng et al. now report a new function for UPF1—it is an E3 ubiquitin ligase that specifically promotes the decay of a key pro-muscle transcription factor: MYOD. UPF1 achieves this through its RING-like domain, which confers ubiquitin E3 ligase activity. Feng et al. provide evidence that the ability of UPF1 to destabilize MYOD represses myogenesis. In the future, it will be important to define (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  39.  86
    That is life: communicating RNA networks from viruses and cells in continuous interaction.Guenther Witzany - 2019 - Annals of the New York Academy of Sciences:1-16.
    All the conserved detailed results of evolution stored in DNA must be read, transcribed, and translated via an RNAmediated process. This is required for the development and growth of each individual cell. Thus, all known living organisms fundamentally depend on these RNA-mediated processes. In most cases, they are interconnected with other RNAs and their associated protein complexes and function in a strictly coordinated hierarchy of temporal and spatial steps (i.e., an RNA network). Clearly, all cellular life as we know it (...)
    Direct download  
     
    Export citation  
     
    Bookmark   3 citations  
  40.  3
    Orchestrating ribosomal RNA folding during ribosome assembly.Michaela Oborská-Oplová, Stefan Gerhardy & Vikram Govind Panse - 2022 - Bioessays 44 (8):2200066.
    Construction of the eukaryotic ribosome is a complex process in which a nascent ribosomal RNA (rRNA) emerging from RNA Polymerase I hierarchically folds into a native three‐dimensional structure. Modular assembly of individual RNA domains through interactions with ribosomal proteins and a myriad of assembly factors permit efficient disentanglement of the error‐prone RNA folding process. Following these dynamic events, long‐range tertiary interactions are orchestrated to compact rRNA. A combination of genetic, biochemical, and structural studies is now providing clues into how a (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  41.  4
    RNA Decay Factor UPF1 Promotes Protein Decay: A Hidden Talent.Terra-Dawn M. Plank & Miles F. Wilkinson - 2018 - Bioessays 40 (1):1700170.
    The RNA-binding protein, UPF1, is best known for its central role in the nonsense-mediated RNA decay pathway. Feng et al. now report a new function for UPF1—it is an E3 ubiquitin ligase that specifically promotes the decay of a key pro-muscle transcription factor: MYOD. UPF1 achieves this through its RING-like domain, which confers ubiquitin E3 ligase activity. Feng et al. provide evidence that the ability of UPF1 to destabilize MYOD represses myogenesis. In the future, it will be important to define (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  42.  7
    How do ADARs bind RNA? New protein‐RNA structures illuminate substrate recognition by the RNA editing ADARs.Justin M. Thomas & Peter A. Beal - 2017 - Bioessays 39 (4):1600187.
    Deamination of adenosine in RNA to form inosine has wide ranging consequences on RNA function including amino acid substitution to give proteins not encoded in the genome. What determines which adenosines in an mRNA are subject to this modification reaction? The answer lies in an understanding of the mechanism and substrate recognition properties of adenosine deaminases that act on RNA (ADARs). Our recent publication of X‐ray crystal structures of the human ADAR2 deaminase domain bound to RNA editing substrates shed considerable (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  43.  8
    When MicroRNAs Meet RNA Editing in Cancer: A Nucleotide Change Can Make a Difference.Yumeng Wang & Han Liang - 2018 - Bioessays 40 (2):1700188.
    RNA editing is a major post-transcriptional mechanism that changes specific nucleotides at the RNA level. The most common RNA editing type in humans is adenosine to inosine editing, which is mediated by ADAR enzymes. RNA editing events can not only change amino acids in proteins, but also affect the functions of non-coding RNAs such as miRNAs. Recent studies have characterized thousands of miRNA RNA editing events across different cancer types. Importantly, individual cases of miRNA editing have been reported to play (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  44.  11
    Temporal interference stimulation targeting right frontoparietal areas enhances working memory in healthy individuals.Yufeng Zhang, Zhining Zhou, Junhong Zhou, Zhenyu Qian, Jiaojiao Lü, Lu Li & Yu Liu - 2022 - Frontiers in Human Neuroscience 16:918470.
    BackgroundTemporal interference (TI) stimulation is a novel technique that enables the non-invasive modulation of deep brain regions. However, the implementation of this technology in humans has not been well-characterized or examined, including its safety and feasibility.ObjectiveWe aimed to examine the feasibility, safety, and blinding of using TI on human participants in this pilot study.Materials and methodsIn a randomized, single-blinded, and sham-controlled pilot study, healthy young participants were randomly divided into four groups [TI and transcranial alternating current stimulation (tACS) targeting (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  45.  3
    What connects splicing of transfer RNA precursor molecules with pontocerebellar hypoplasia?Samoil Sekulovski & Simon Trowitzsch - 2023 - Bioessays 45 (2):2200130.
    Transfer RNAs (tRNAs) represent the most abundant class of RNA molecules in the cell and are key players during protein synthesis and cellular homeostasis. Aberrations in the extensive tRNA biogenesis pathways lead to severe neurological disorders in humans. Mutations in the tRNA splicing endonuclease (TSEN) and its associated RNA kinase cleavage factor polyribonucleotide kinase subunit 1 (CLP1) cause pontocerebellar hypoplasia (PCH), a heterogeneous group of neurodegenerative disorders, that manifest as underdevelopment of specific brain regions typically accompanied by microcephaly, profound motor (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  46.  15
    Are non‐protein coding RNAs junk or treasure?Nils G. Walter - 2024 - Bioessays 46 (4):2300201.
    The human genome project's lasting legacies are the emerging insights into human physiology and disease, and the ascendance of biology as the dominant science of the 21st century. Sequencing revealed that >90% of the human genome is not coding for proteins, as originally thought, but rather is overwhelmingly transcribed into non‐protein coding, or non‐coding, RNAs (ncRNAs). This discovery initially led to the hypothesis that most genomic DNA is “junk”, a term still championed by some geneticists and evolutionary biologists. In contrast, (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  47.  3
    RNA structure: Merging chemistry and genomics for a holistic perspective.Miles Kubota, Dalen Chan & Robert C. Spitale - 2015 - Bioessays 37 (10):1129-1138.
    The advent of deep sequencing technology has unexpectedly advanced our structural understanding of molecules composed of nucleic acids. A significant amount of progress has been made recently extrapolating the chemical methods to probe RNA structure into sequencing methods. Herein we review some of the canonical methods to analyze RNA structure, and then we outline how these have been used to probe the structure of many RNAs in parallel. The key is the transformation of structural biology problems into sequencing problems, whereby (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  48.  2
    RNA processing in prokaryotic cells.David Apirion & Andras Miczak - 1993 - Bioessays 15 (2):113-120.
    RNA processing in Escherichia coli and some of its phages is reviewed here, with primary emphasis on rRNA and tRNA processing. Three enzymes, RNase III, RNase E and RNase P are responsible for most of the primary endonucleolytic RNA processing events. The first two are proteins, while RNase P is a ribozyme. These three enzymes have unique functions and in their absence, the cleavage events they catalyze are not performed. On the other hand a relatively large number of exonucleases participate (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  49.  5
    RNA as the substrate for epigenome‐environment interactions.John S. Mattick - 2010 - Bioessays 32 (7):548-552.
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   7 citations  
  50.  6
    RNA editing: Exploring one mode with apolipoprotein B mRNA.Lawrence Chan - 1993 - Bioessays 15 (1):33-41.
    RNA editing is a newly described genetic phenomenon. It encompasses widely different molecular mechanisms and events. According to the specific RNA modification, RNA editing can be broadly classified into six major types. Type II RNA editing occurs in plants and mammals; it consists predominantly in cytidine to uridine conversions resulting from deamination/transamination or transglycosylation, although in plants other mechanisms have not been excluded. Apolipoprotein B mRNA editing is the only well‐documented editing phenomenon in mammals. It is an intranuclear event that (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
1 — 50 / 1000