Deubiquitinating Enzymes in Model Systems and Therapy: Redundancy and Compensation Have Implications

Bioessays 41 (11):1900112 (2019)
  Copy   BIBTEX

Abstract

The multiplicity of deubiquitinating enzymes (DUBs) encoded by vertebrate genomes is partly attributable to whole genome duplication events that occurred early in chordate evolution. By surveying the literature for the largest family of DUBs (the ubiquitin-specific proteases), extensive functional redundancy for duplicated genes has been confirmed as opposed to singletons. Dramatically conflicting results have been reported for loss of function studies conducted through RNA interference as opposed to inactivating mutations, but the contradictory findings can be reconciled by a recently proposed compensatory mechanism involving nonsense-mediated RNA degradation. Duplicated genes are often inactivated to become pseudogenes, and it is proposed that such is the fate of the USP15 gene of zebrafish, a commonly used model system. As it is reviewed here, these observations have implications not only for the interpretation of model system phenotypes but also for therapeutic interventions designed to target DUBs.

Links

PhilArchive



    Upload a copy of this work     Papers currently archived: 93,069

External links

Setup an account with your affiliations in order to access resources via your University's proxy server

Through your library

Similar books and articles

Analytics

Added to PP
2019-09-24

Downloads
14 (#1,019,789)

6 months
5 (#710,385)

Historical graph of downloads
How can I increase my downloads?