Solutions to semantic paradoxes often involve restrictions of classical logic for semantic vocabulary. In the paper we investigate the costs of these restrictions in a model case. In particular, we fix two systems of truth capturing the same conception of truth: of the system KF of Feferman formulated in classical logic, and the system PKF of Halbach and Horsten, formulated in basic De Morgan logic. The classical system is known to be much stronger than the nonclassical one. We assess the (...) reasons for this asymmetry by showing that the truth theoretic principles of PKF cannot be blamed: PKF with induction restricted to non-semantic vocabulary coincides in fact with what the restricted version of KF proves true. (shrink)
As a response to the semantic and logical paradoxes, theorists often reject some principles of classical logic. However, classical logic is entangled with mathematics, and giving up mathematics is too high a price to pay, even for nonclassical theorists. The so-called recapture theorems come to the rescue. When reasoning with concepts such as truth/class membership/property instantiation, if ones is interested in consequences of the theory that only contain mathematical vocabulary, nothing is lost by reasoning in the nonclassical framework. It is (...) shown that this claim is highly misleading, if not simply false. Under natural assumptions, recapture claims are incorrect. (shrink)
Truth-theoretic deflationism holds that truth is simple, and yet that it can fulfil many useful logico-linguistic roles. Deflationism focuses on axioms for truth: there is no reduction of the notion of truth to more fundamental ones such as sets or higher-order quantifiers. In this paper I argue that the fundamental properties of reasonable, primitive truth predicates are at odds with the core tenets of classical truth-theoretic deflationism that I call fix, express, and quantify. Truth may be regarded as a broadly (...) logical, sui generis notion. However, this has little to do with the original aims of the deflationary theory of truth. (shrink)
We discuss the principles for a primitive, object-linguistic notion of consequence proposed by ) that yield a version of Curry’s paradox. We propose and study several strategies to weaken these principles and overcome paradox: all these strategies are based on the intuition that the object-linguistic consequence predicate internalizes whichever meta-linguistic notion of consequence we accept in the first place. To these solutions will correspond different conceptions of consequence. In one possible reading of these principles, they give rise to a notion (...) of logical consequence: we study the corresponding theory of validity by showing that it is conservative over a wide range of base theories: this result is achieved via a well-behaved form of local reduction. The theory of logical consequence is based on a restriction of the introduction rule for the consequence predicate. To unrestrictedly maintain this principle, we develop a conception of object-linguistic consequence, which we call grounded consequence, that displays a restriction of the structural rule of reflexivity. This construction is obtained by generalizing Saul Kripke’s inductive theory of truth. Grounded validity will be shown to satisfy several desirable principles for a naïve, self-applicable notion of consequence. (shrink)
Hartry Field distinguished two concepts of type-free truth: scientific truth and disquotational truth. We argue that scientific type-free truth cannot do justificatory work in the foundations of mathematics. We also present an argument, based on Crispin Wright's theory of cognitive projects and entitlement, that disquotational truth can do justificatory work in the foundations of mathematics. The price to pay for this is that the concept of disquotational truth requires non-classical logical treatment.
We study the relationships between two clusters of axiomatizations of Kripke’s fixed-point models for languages containing a self-applicable truth predicate. The first cluster is represented by what we will call ‘\-like’ theories, originating in recent work by Halbach and Horsten, whose axioms and rules are all valid in fixed-point models; the second by ‘\-like’ theories first introduced by Solomon Feferman, that lose this property but reflect the classicality of the metatheory in which Kripke’s construction is carried out. We show that (...) to any natural system in one cluster—corresponding to natural variations on induction schemata—there is a corresponding system in the other proving the same sentences true, addressing a problem left open by Halbach and Horsten and accomplishing a suitably modified version of the project sketched by Reinhardt aiming at an instrumental reading of classical theories of self-applicable truth. (shrink)
Following recent developments in the literature on axiomatic theories of truth, we investigate an alternative to the widespread habit of formalizing the syntax of the object-language into the object-language itself. We first argue for the proposed revision, elaborating philosophical evidences in favor of it. Secondly, we present a general framework for axiomatic theories of truth with theories of syntax. Different choices of the object theory O will be considered. Moreover, some strengthenings of these theories will be introduced: we will consider (...) extending the theories by the addition of coding axioms or by extending the schemas of O, if present, to the entire vocabulary of our theory of truth. Finally, we touch on the philosophical consequences that the theories described can have on the debate about the metaphysical status of the truth predicate and on the formalization of our informal metatheoretic reasoning. (shrink)
The notion of strength has featured prominently in recent debates about abductivism in the epistemology of logic. Following Williamson and Russell, we distinguish between logical and scientific strength and discuss the limits of the characterizations they employ. We then suggest understanding logical strength in terms of interpretability strength and scientific strength as a special case of logical strength. We present applications of the resulting notions to comparisons between logics in the traditional sense and mathematical theories.
Questions concerning the proof-theoretic strength of classical versus nonclassical theories of truth have received some attention recently. A particularly convenient case study concerns classical and nonclassical axiomatizations of fixed-point semantics. It is known that nonclassical axiomatizations in four- or three-valued logics are substantially weaker than their classical counterparts. In this paper we consider the addition of a suitable conditional to First-Degree Entailment—a logic recently studied by Hannes Leitgeb under the label HYPE. We show in particular that, by formulating the theory (...) PKF over HYPE, one obtains a theory that is sound with respect to fixed-point models, while being proof-theoretically on a par with its classical counterpart KF. Moreover, we establish that also its schematic extension—in the sense of Feferman—is as strong as the schematic extension of KF, thus matching the strength of predicative analysis. (shrink)
In the paper we investigate typed axiomatizations of the truth predicate in which the axioms of truth come with a built-in, minimal and self-sufficient machinery to talk about syntactic aspects of an arbitrary base theory. Expanding previous works of the author and building on recent works of Albert Visser and Richard Heck, we give a precise characterization of these systems by investigating the strict relationships occurring between them, arithmetized model constructions in weak arithmetical systems and suitable set existence axioms. The (...) framework considered will give rise to some methodological remarks on the construction of truth theories and provide us with a privileged point of view to analyze the notion of truth arising from compositional principles in a typed setting. (shrink)
What is commonly referred to as the Adoption Problem is a challenge to the idea that the principles of logic can be rationally revised. The argument is based on a reconstruction of unpublished work by Saul Kripke. As the reconstruction has it, Kripke extends the scope of Willard van Orman Quine's regress argument against conventionalism to the possibility of adopting new logical principles. In this paper we want to discuss the scope of this challenge. Are all revisions of logic subject (...) to the Adoption Problem? If not, are there significant cases of logical revision that are subject to the Adoption Problem? We will argue that both questions should be answered negatively. (shrink)
The existence of a close connection between results on axiomatic truth and the analysis of truth-theoretic deflationism is nowadays widely recognized. The first attempt to make such link precise can be traced back to the so-called conservativeness argument due to Leon Horsten, Stewart Shapiro and Jeffrey Ketland: by employing standard Gödelian phenomena, they concluded that deflationism is untenable as any adequate theory of truth leads to consequences that were not achievable by the base theory alone. In the paper I highlight, (...) as Shapiro and Ketland, the irreducible nature of truth axioms with respect to their base theories. But, I argue, this does not immediately delineate a notion of truth playing a substantial role in philosophical or scientific explanations. I first offer a refinement of Hartry Field’s reaction to the conservativeness argument by distinguishing between metatheoretic and object-theoretic consequences of the theory of truth and address some possible rejoinders. In the resulting picture, truth is an irreducible tool for metatheoretic ascent. How robust is this characterizaton? I test it by considering: a recent example, due to Leon Horsten, of the alleged explanatory role played by the truth predicate in the derivation of Fitch’s paradox; an essential weakening of theories of truth analyzed in the first part of the paper. (shrink)
When are two formal theories of broadly logical concepts, such as truth, equivalent? The paper investigates a case study, involving two well-known variants Kripke-Feferman truth. The first, KF+CONS, features a consistent but partial truth predicate. The second, KF+COMP, an inconsistent but complete truth predicate. It is well-known that the two truth predicates are dual to each other. We show that this duality reveals a much stricter correspondence between the two theories: they are intertraslatable. Intertranslatability under natural assumptions coincides with definitional (...) equivalence, and is arguably the strictest notion of theoretical equivalence different from logical equivalence. The case of KF+CONS and KF+COMP raises a puzzle: the two theories can be proved to be strictly related, yet they appear to embody remarkably different conceptions of truth. We discuss the significance of the result for the broader debate on formal criteria of conceptual reducibility for theories of truth. (shrink)
According to the implicit commitment thesis, once accepting a mathematical formal system S, one is implicitly committed to additional resources not immediately available in S. Traditionally, this thesis has been understood as entailing that, in accepting S, we are bound to accept reflection principles for S and therefore claims in the language of S that are not derivable in S itself. It has recently become clear, however, that such reading of the implicit commitment thesis cannot be compatible with well-established positions (...) in the foundations of mathematics which consider a specific theory S as self-justifying and doubt the legitimacy of any principle that is not derivable in S: examples are Tait’s finitism and the role played in it by Primitive Recursive Arithmetic, Isaacson’s thesis and Peano Arithmetic, Nelson’s ultrafinitism and sub-exponential arithmetical systems. This casts doubts on the very adequacy of the implicit commitment thesis for arithmetical theories. In the paper we show that such foundational standpoints are nonetheless compatible with the implicit commitment thesis. We also show that they can even be compatible with genuine soundness extensions of S with suitable form of reflection. The analysis we propose is as follows: when accepting a system S, we are bound to accept a fixed set of principles extending S and expressing minimal soundness requirements for S, such as the fact that the non-logical axioms of S are true. We call this invariant component the semantic core of implicit commitment. But there is also a variable component of implicit commitment that crucially depends on the justification given for our acceptance of S in which, for instance, may or may not appear reflection principles for S. We claim that the proposed framework regulates in a natural and uniform way our acceptance of different arithmetical theories. (shrink)
One way to study and understand the notion of truth is to examine principles that we are willing to associate with truth, often because they conform to a pre-theoretical or to a semi-formal characterization of this concept. In comparing different collections of such principles, one requires formally precise notions of inter-theoretic reduction that are also adequate to compare these conceptual aspects. In this work I study possible ways to make precise the relation of conceptual equivalence between notions of truth associated (...) with collections of principles of truth. In doing so, I will consider refinements and strengthenings of the notion of relative truth-definability proposed by Fujimoto (2010): in particular I employ suitable variants of notions of equivalence of theories considered in Visser (2006) and Friedman & Visser (2014) to show that there are better candidates than mutual truth-definability for the role of sufficient condition for conceptual equivalence between the semantic notions associated with the theories. In the concluding part of the paper, I extend the techniques introduced in the first and show that there is a precise sense in which ramified truth (either disquotational or compositional) does not correspond to iterations of comprehension. (shrink)
The notion of implicit commitment has played a prominent role in recent works in logic and philosophy of mathematics. Although implicit commitment is often associated with highly technical studies, it remains so far an elusive notion. In particular, it is often claimed that the acceptance of a mathematical theory implicitly commits one to the acceptance of a Uniform Reflection Principle for it. However, philosophers agree that a satisfactory analysis of the transition from a theory to its reflection principle is still (...) lacking. We provide an axiomatization of the minimal commitments implicit in the acceptance of a mathematical theory. The theory entails that the Uniform Reflection Principle is part of one's implicit commitments, and sheds light on the reason why this is so. We argue that the theory has interesting epistemological consequences in that it explains how justified belief in the axioms of a theory can be preserved to the corresponding reflection principle. The theory also improves on recent proposals for the analysis of implicit commitment based on truth or epistemic notions. (shrink)
Starting with a trustworthy theory T, Galvan (1992) suggests to read off, from the usual hierarchy of theories determined by consistency strength, a finer-grained hierarchy in which theories higher up are capable of ‘explaining’, though not fully justifying, our commitment to theories lower down. One way to ascend Galvan’s ‘hierarchy of explanation’ is to formalize soundness proofs: to this extent it often suffices to assume a full theory of truth for the theory T whose soundness is at stake. In this (...) paper, we investigate the possibility of an extension of this method. Our ultimate goal will be to extend T not only with truth axioms, but with a combination of axioms for predicates for truth and necessity. We first consider two alternative strategies for providing possible worlds semantics for necessity as a predicate, one based on classical logic, the other on a supervaluationist interpretation of necessity. We will then formulate a deductive system of truth and necessity in classical logic that is sound with respect to the given (nonclassical) semantics. (shrink)
Substructural logics and their application to logical and semantic paradoxes have been extensively studied, but non-reflexive systems have been somewhat neglected. Here, we aim to fill this lacuna, at least in part, by presenting a non-reflexive logic and theory of naive consequence (and truth). We also investigate the semantics and the proof-theory of the system. Finally, we develop a compositional theory of truth (and consequence) in our non-reflexive framework.
The paper studies a cluster of systems for fully disquotational truth based on the restriction of initial sequents. Unlike well-known alternative approaches, such systems display both a simple and intuitive model theory and remarkable proof-theoretic properties. We start by showing that, due to a strong form of invertibility of the truth rules, cut is eliminable in the systems via a standard strategy supplemented by a suitable measure of the number of applications of truth rules to formulas in derivations. Next, we (...) notice that cut remains eliminable when suitable arithmetical axioms are added to the system. Finally, we establish a direct link between cut-free derivability in infinitary formulations of the systems considered and fixed-point semantics. Noticeably, unlike what happens with other background logics, such links are established without imposing any restriction to the premisses of the truth rules. (shrink)
We determine the modal logic of fixed-point models of truth and their axiomatizations by Solomon Feferman via Solovay-style completeness results. Given a fixed-point model $\mathcal {M}$, or an axiomatization S thereof, we find a modal logic M such that a modal sentence $\varphi $ is a theorem of M if and only if the sentence $\varphi ^*$ obtained by translating the modal operator with the truth predicate is true in $\mathcal {M}$ or a theorem of S under all such translations. (...) To this end, we introduce a novel version of possible worlds semantics featuring both classical and nonclassical worlds and establish the completeness of a family of noncongruent modal logics whose internal logic is nonclassical with respect to this semantics. (shrink)
The aim of this volume is to open up new perspectives and to raise new research questions about a unified approach to truth, modalities, and propositional attitudes. The volume's essays are grouped thematically around different research questions. The first theme concerns the tension between the theoretical role of the truth predicate in semantics and its expressive function in language. The second theme of the volume concerns the interaction of truth with modal and doxastic notions. The third theme covers higher-order solutions (...) to the semantic and modal paradoxes, providing an alternative to first-order solutions embraced in the first two themes. This book will be of interest to researchers working in epistemology, logic, philosophy of logic, philosophy of language, philosophy of mathematics, and semantics. (shrink)
In the paper we survey the known connections between theories that extend a common base theory with typed truth axioms on the one hand and predicative set-existence assumptions on the other. How general can the mutual reductions between truth and comprehension be taken to be? In trying to address this question, we consider classical, positive truth and predicative comprehension as operations on theories.