Results for 'Pedagogical model of quantum mechanics over sets'

986 found
Order:
  1. Quantum mechanics over sets: a pedagogical model with non-commutative finite probability theory as its quantum probability calculus.David Ellerman - 2017 - Synthese (12).
    This paper shows how the classical finite probability theory (with equiprobable outcomes) can be reinterpreted and recast as the quantum probability calculus of a pedagogical or toy model of quantum mechanics over sets (QM/sets). There have been several previous attempts to develop a quantum-like model with the base field of ℂ replaced by ℤ₂. Since there are no inner products on vector spaces over finite fields, the problem is to (...)
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark   4 citations  
  2.  79
    Quantum mechanics over sets: a pedagogical model with non-commutative finite probability theory as its quantum probability calculus.David Ellerman - 2017 - Synthese (12):4863-4896.
    This paper shows how the classical finite probability theory (with equiprobable outcomes) can be reinterpreted and recast as the quantum probability calculus of a pedagogical or toy model of quantum mechanics over sets (QM/sets). There have been several previous attempts to develop a quantum-like model with the base field of ℂ replaced by ℤ₂. Since there are no inner products on vector spaces over finite fields, the problem is to (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   7 citations  
  3.  99
    Partitions and Objective Indefiniteness in Quantum Mechanics.David Ellerman - manuscript
    Classical physics and quantum physics suggest two meta-physical types of reality: the classical notion of a objectively definite reality with properties "all the way down," and the quantum notion of an objectively indefinite type of reality. The problem of interpreting quantum mechanics is essentially the problem of making sense out of an objectively indefinite reality. These two types of reality can be respectively associated with the two mathematical concepts of subsets and quotient sets which are (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  4. The Quantum Logic of Direct-Sum Decompositions: The Dual to the Quantum Logic of Subspaces.David Ellerman - 2017
    Since the pioneering work of Birkhoff and von Neumann, quantum logic has been interpreted as the logic of (closed) subspaces of a Hilbert space. There is a progression from the usual Boolean logic of subsets to the "quantum logic" of subspaces of a general vector space--which is then specialized to the closed subspaces of a Hilbert space. But there is a "dual" progression. The notion of a partition (or quotient set or equivalence relation) is dual (in a category-theoretic (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   3 citations  
  5. On classical finite probability theory as a quantum probability calculus.David Ellerman - manuscript
    This paper shows how the classical finite probability theory (with equiprobable outcomes) can be reinterpreted and recast as the quantum probability calculus of a pedagogical or "toy" model of quantum mechanics over sets (QM/sets). There are two parts. The notion of an "event" is reinterpreted from being an epistemological state of indefiniteness to being an objective state of indefiniteness. And the mathematical framework of finite probability theory is recast as the quantum (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  6. Quantum mechanics as a theory of probability.Itamar Pitowsky - unknown
    We develop and defend the thesis that the Hilbert space formalism of quantum mechanics is a new theory of probability. The theory, like its classical counterpart, consists of an algebra of events, and the probability measures defined on it. The construction proceeds in the following steps: (a) Axioms for the algebra of events are introduced following Birkhoff and von Neumann. All axioms, except the one that expresses the uncertainty principle, are shared with the classical event space. The only (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   38 citations  
  7.  38
    Quantum mechanics without the projection postulate.Jeffrey Bub - 1992 - Foundations of Physics 22 (5):737-754.
    I show that the quantum state ω can be interpreted as defining a probability measure on a subalgebra of the algebra of projection operators that is not fixed (as in classical statistical mechanics) but changes with ω and appropriate boundary conditions, hence with the dynamics of the theory. This subalgebra, while not embeddable into a Boolean algebra, will always admit two-valued homomorphisms, which correspond to the different possible ways in which a set of “determinate” quantities (selected by ω (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   19 citations  
  8. Quantum Mechanical Reality: Entanglement and Decoherence.Avijit Lahiri - manuscript
    We look into the ontology of quantum theory as distinct from that of the classical theory in the sciences. Theories carry with them their own ontology while the metaphysics may remain the same in the background. We follow a broadly Kantian tradition, distinguishing between the noumenal and phenomenal realities where the former is independent of our perception while the latter is assembled from the former by means of fragmentary bits of interpretation. Theories do not tell us how the noumenal (...)
    Direct download  
     
    Export citation  
     
    Bookmark  
  9. Probability Theory with Superposition Events.David Ellerman - manuscript
    In finite probability theory, events are subsets S⊆U of the outcome set. Subsets can be represented by 1-dimensional column vectors. By extending the representation of events to two dimensional matrices, we can introduce "superposition events." Probabilities are introduced for classical events, superposition events, and their mixtures by using density matrices. Then probabilities for experiments or `measurements' of all these events can be determined in a manner exactly like in quantum mechanics (QM) using density matrices. Moreover the transformation of (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  10. The case of quantum mechanics mathematizing reality: the “superposition” of mathematically modelled and mathematical reality: Is there any room for gravity?Vasil Penchev - 2020 - Cosmology and Large-Scale Structure eJournal (Elsevier: SSRN) 2 (24):1-15.
    A case study of quantum mechanics is investigated in the framework of the philosophical opposition “mathematical model – reality”. All classical science obeys the postulate about the fundamental difference of model and reality, and thus distinguishing epistemology from ontology fundamentally. The theorems about the absence of hidden variables in quantum mechanics imply for it to be “complete” (versus Einstein’s opinion). That consistent completeness (unlike arithmetic to set theory in the foundations of mathematics in Gödel’s (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  11. Essays on the Metaphysics of Quantum Mechanics.Eddy Keming Chen - 2019 - Dissertation, Rutgers University, New Brunswick
    What is the proper metaphysics of quantum mechanics? In this dissertation, I approach the question from three different but related angles. First, I suggest that the quantum state can be understood intrinsically as relations holding among regions in ordinary space-time, from which we can recover the wave function uniquely up to an equivalence class (by representation and uniqueness theorems). The intrinsic account eliminates certain conventional elements (e.g. overall phase) in the representation of the quantum state. It (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  12.  82
    On the zigzagging causility model of EPR correlations and on the interpretation of quantum mechanics.O. Costa de Beauregard - 1988 - Foundations of Physics 18 (9):913-938.
    Being formalized inside the S-matrix scheme, the zigzagging causility model of EPR correlations has full Lorentz and CPT invariance. EPR correlations, proper or reversed, and Wheeler's smoky dragon metaphor are respectively pictured in spacetime or in the momentum-energy space, as V-shaped, A-shaped, or C-shaped ABC zigzags, with a summation at B over virtual states |B〉 〈B|. An exact “correspondence” exists between the Born-Jordan-Dirac “wavelike” algebra of transition amplitudes and the 1774 Laplace algebra of conditional probabilities, where the intermediate (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  13.  23
    A Local Interpretation of Quantum Mechanics.Carlos Lopez - 2016 - Foundations of Physics 46 (4):484-504.
    A local interpretation of quantum mechanics is presented. Its main ingredients are: first, a label attached to one of the “virtual” paths in the path integral formalism, determining the output for measurement of position or momentum; second, a mathematical model for spin states, equivalent to the path integral formalism for point particles in space time, with the corresponding label. The mathematical machinery of orthodox quantum mechanics is maintained, in particular amplitudes of probability and Born’s rule; (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  14.  35
    Tabletop Experiments for Quantum Gravity Are Also Tests of the Interpretation of Quantum Mechanics.Emily Adlam - 2022 - Foundations of Physics 52 (5):1-43.
    Recently there has been a great deal of interest in tabletop experiments intended to exhibit the quantum nature of gravity by demonstrating that it can induce entanglement. In order to evaluate these experiments, we must determine if there is any interesting class of possibilities that will be convincingly ruled out if it turns out that gravity can indeed induce entanglement. In particular, since one argument for the significance of these experiments rests on the claim that they demonstrate the existence (...)
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  15. Quantum Information Theory & the Foundations of Quantum Mechanics.Christopher Gordon Timpson - 2004 - Oxford, GB: Oxford University Press.
    Quantum Information Theory and the Foundations of Quantum Mechanics is a conceptual analysis of one of the most prominent and exciting new areas of physics, providing the first full-length philosophical treatment of quantum information theory and the questions it raises for our understanding of the quantum world. -/- Beginning from a careful, revisionary, analysis of the concepts of information in the everyday and classical information-theory settings, Christopher G. Timpson argues for an ontologically deflationary account of (...)
    Direct download (7 more)  
     
    Export citation  
     
    Bookmark   47 citations  
  16.  30
    Why Scientific Realists Should Reject the Second Dogma of Quantum Mechanics.Valia Allori - 2020 - In Meir Hemmo & Orly Shenker (eds.), Quantum, Probability, Logic: Itamar Pitowsky’s Work and Influence. Springer. pp. 19-48.
    The information-theoretic approach to quantum mechanics, proposed by Bub and Pitowsky, is a realist approach to quantum theory which rejects the “two dogmas” of quantum mechanics: in this theory measurement results are not analysed in terms of something more fundamental, and the quantum state does not represent physical entities. Bub and Pitowsky’s approach has been criticized because their rejection of the first dogma relies on their argument that kinematic explanations are more satisfactory than dynamical (...)
    Direct download  
     
    Export citation  
     
    Bookmark   2 citations  
  17.  67
    A philosopher's view of the epistemic interpretation of quantum mechanics.Shahar Avin - unknown
    There are various reasons for favouring Ψ-epistemic interpretations of quantum mechanics over Ψ-ontic interpretations. One such reason is the correlation between quantum mechanics and Liouville dynamics. Another reason is the success of a specific epistemic model (Spekkens, 2007), in reproducing a wide range of quantum phenomena. The potential criticism, that Spekkens' restricted knowledge principle is counter-intuitive, is rejected using `everyday life' examples. It is argued that the dimensionality of spin favours Spekkens' model (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  18.  33
    New Trajectory Interpretation of Quantum Mechanics.P. R. Holland - 1998 - Foundations of Physics 28 (6):881-911.
    It was shown by de Broglie and Bohm that the concept of a deterministic particle trajectory is compatible with quantum mechanics. It is demonstrated by explicit construction that there exists another more general deterministic trajectory interpretation. The method exploits an internal angular degree of freedom that is implicit in the Schrödinger equation, in addition to the particle position. The de Broglie-Bohm model is recovered when the new theory is averaged over the internal freedom. The model (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   4 citations  
  19. “Fuzzy time”, a Solution of Unexpected Hanging Paradox (a Fuzzy interpretation of Quantum Mechanics).Farzad Didehvar - manuscript
    Although Fuzzy logic and Fuzzy Mathematics is a widespread subject and there is a vast literature about it, yet the use of Fuzzy issues like Fuzzy sets and Fuzzy numbers was relatively rare in time concept. This could be seen in the Fuzzy time series. In addition, some attempts are done in fuzzing Turing Machines but seemingly there is no need to fuzzy time. Throughout this article, we try to change this picture and show why it is helpful to (...)
    No categories
    Direct download  
     
    Export citation  
     
    Bookmark   5 citations  
  20.  88
    Effect Algebras Are Not Adequate Models for Quantum Mechanics.Stan Gudder - 2010 - Foundations of Physics 40 (9-10):1566-1577.
    We show that an effect algebra E possess an order-determining set of states if and only if E is semiclassical; that is, E is essentially a classical effect algebra. We also show that if E possesses at least one state, then E admits hidden variables in the sense that E is homomorphic to an MV-algebra that reproduces the states of E. Both of these results indicate that we cannot distinguish between a quantum mechanical effect algebra and a classical one. (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  21.  48
    Typicality vs. Probability in Trajectory-Based Formulations of Quantum Mechanics.Bruno Galvan - 2007 - Foundations of Physics 37 (11):1540-1562.
    Bohmian mechanics represents the universe as a set of paths with a probability measure defined on it. The way in which a mathematical model of this kind can explain the observed phenomena of the universe is examined in general. It is shown that the explanation does not make use of the full probability measure, but rather of a suitable set function deriving from it, which defines relative typicality between single-time cylinder sets. Such a set function can also (...)
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  22.  19
    A Local $$psi $$-Epistemic Retrocausal Hidden-Variable Model of Bell Correlations with Wavefunctions in Physical Space.Indrajit Sen - 2019 - Foundations of Physics 49 (2):83-95.
    We construct a local \-epistemic hidden-variable model of Bell correlations by a retrocausal adaptation of the originally superdeterministic model given by Brans. In our model, for a pair of particles the joint quantum state \\rangle \) as determined by preparation is epistemic. The model also assigns to the pair of particles a factorisable joint quantum state \\rangle \) which is different from the prepared quantum state \\rangle \) and has an ontic status. The (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   3 citations  
  23.  23
    Quantum Mechanics and Salvation: a new meeting point for science and theology.Emily Qureshi-Hurst - forthcoming - Toronto Journal of Theology.
    Quantum mechanics has recently indicated that temporal order is not always fixed, a finding that has far-reaching philosophical and theological implications. The phenomena, termed “indefinite causal order,” shows that events can be in a superposition with regard to their order. In the experimental setting with which this article is concerned, two events, A and B, were shown to be in the ordering relations “A before B” and “B before A” at the same time. This article introduces an ongoing (...)
    Direct download  
     
    Export citation  
     
    Bookmark  
  24. Van Fraassen's modal model of quantum mechanics.Nancy Cartwright - 1974 - Philosophy of Science 41 (2):199-202.
    Bas van Fraassen in [4] has recently tried to use modal logic to solve the measurement problem of quantum mechanics. His model is based on a method of expressing quantum states developed by Hugh Everett [1] called the “relative state formulation.” Unfortunately, Everett's mathematics cannot be generalized as van Fraassen requires. The difficulty itself is elementary enough. But a revision of van Fraassen's postulates can save the mathematics only on pain of making the whole study irrelevant (...)
    Direct download (8 more)  
     
    Export citation  
     
    Bookmark   3 citations  
  25.  37
    A modified set of Feynman postulates in quantum mechanics.V. K. Thankappan & P. Gopalakrishna Nambi - 1980 - Foundations of Physics 10 (3-4):217-236.
    Certain modifications, by way of improvement, are proposed for the Feynman postulates in quantum mechanics. These modifications incorporate a criterion for the applicability of the principle of superposition. It is shown that the modified postulates, together with certain assumptions regarding the trajectory of a particle, lead to an expression for the position-momentum uncertainty relationship which is broadly in agreement with the conventional expression. The time-energy uncertainty relationship is, however, found to have a likely place only in the relativistic (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  26.  83
    Quantum Mechanics on Hilbert Manifolds: The Principle of Functional Relativity. [REVIEW]Alexey A. Kryukov - 2006 - Foundations of Physics 36 (2):175-226.
    Quantum mechanics is formulated as a geometric theory on a Hilbert manifold. Images of charts on the manifold are allowed to belong to arbitrary Hilbert spaces of functions including spaces of generalized functions. Tensor equations in this setting, also called functional tensor equations, describe families of functional equations on various Hilbert spaces of functions. The principle of functional relativity is introduced which states that quantum theory (QT) is indeed a functional tensor theory, i.e., it can be described (...)
    Direct download (6 more)  
     
    Export citation  
     
    Bookmark   4 citations  
  27.  31
    Completely Discretized, Finite Quantum Mechanics.Sean M. Carroll - 2023 - Foundations of Physics 53 (6):1-13.
    I propose a version of quantum mechanics featuring a discrete and finite number of states that is plausibly a model of the real world. The model is based on standard unitary quantum theory of a closed system with a finite-dimensional Hilbert space. Given certain simple conditions on the spectrum of the Hamiltonian, Schrödinger evolution is periodic, and it is straightforward to replace continuous time with a discrete version, with the result that the system only visits (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  28.  35
    Quantum Mechanics, Formalization and the Cosmological Constant Problem.Jerzy Król & Torsten Asselmeyer-Maluga - 2020 - Foundations of Science 25 (4):879-904.
    Based on formal arguments from Zermelo–Fraenkel set theory we develop the environment for explaining and resolving certain fundamental problems in physics. By these formal tools we show that any quantum system defined by an infinite dimensional Hilbert space of states interferes with the spacetime structure M. M and the quantum system both gain additional degrees of freedom, given by models of Zermelo–Fraenkel set theory. In particular, M develops the ground state where classical gravity vanishes. Quantum mechanics (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  29.  46
    On Superdeterministic Rejections of Settings Independence.Gerardo Sanjuán Ciepielewski, Elias Okon & Daniel Sudarsky - 2021 - British Journal for the Philosophy of Science 74 (2):435-467.
    Relying on some auxiliary assumptions, usually considered mild, Bell’s theorem proves that no local theory can reproduce all the predictions of quantum mechanics. In this work, we introduce a fully local, superdeterministic model that by explicitly violating ‘settings independence’—one of these auxiliary assumptions, requiring statistical independence between measurement settings and systems to be measured—is able to reproduce all the predictions of quantum mechanics. Moreover, we show that contrary to widespread expectations, our model can break (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   6 citations  
  30.  87
    An Approach to Quantum Mechanics via Conditional Probabilities.Gerd Niestegge - 2008 - Foundations of Physics 38 (3):241-256.
    The well-known proposal to consider the Lüders-von Neumann measurement as a non-classical extension of probability conditionalization is further developed. The major results include some new concepts like the different grades of compatibility, the objective conditional probabilities which are independent of the underlying state and stem from a certain purely algebraic relation between the events, and an axiomatic approach to quantum mechanics. The main axioms are certain postulates concerning the conditional probabilities and own intrinsic probabilistic interpretations from the very (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   11 citations  
  31.  77
    Big toy models: Representing physical systems as Chu spaces.Samson Abramsky - 2012 - Synthese 186 (3):697 - 718.
    We pursue a model-oriented rather than axiomatic approach to the foundations of Quantum Mechanics, with the idea that new models can often suggest new axioms. This approach has often been fruitful in Logic and Theoretical Computer Science. Rather than seeking to construct a simplified toy model, we aim for a 'big toy model', in which both quantum and classical systems can be faithfully represented—as well as, possibly, more exotic kinds of systems. To this end, (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  32. Consciousness Studies and Quantum Mechanics.Varanasi Ramabrahmam - 2017 - Http://Scsiscs.Org/Conference/Scienceandscientist/2017/ 5:165-171.
    The limitations and unsuitability of the twentieth century intellectual marvel, the quantum mechanics for the task of unraveling working of human consciousness is critically analyzed. The inbuilt traits of the probabilistic, approximate and imprecise nature of quantum mechanical approach are brought out. -/- The limitations and the unsuitability of using such knowledge for the understanding of precise, correct, finite and definite happenings of activities relating to human consciousness and mind, which are not quantum in nature, are (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  33. Physical Entity as Quantum Information.Vasil Penchev - 2020 - Philosophy of Science eJournal (Elsevier: SSRN) 13 (35):1-15.
    Quantum mechanics was reformulated as an information theory involving a generalized kind of information, namely quantum information, in the end of the last century. Quantum mechanics is the most fundamental physical theory referring to all claiming to be physical. Any physical entity turns out to be quantum information in the final analysis. A quantum bit is the unit of quantum information, and it is a generalization of the unit of classical information, a (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  34. The Logic of Fundamental Processes: Nonmeasurable Sets and Quantum Mechanics.Itamar Pitowsky - 1983 - Dissertation, The University of Western Ontario (Canada)
    Quantum theory has played a significant role in modern philosophy both as a source of metaphysical ideas and as an important example of a 'scientific revolution'. In spite of the sixty or so years that have elapsed since its invention, a long lasting controversy concerning the interpretation and meaning of quantum theory prevails. Almost all authors, however, seem to agree on one major point, namely, that there could be no interpretation of this theory which is both realistic and (...)
     
    Export citation  
     
    Bookmark   1 citation  
  35. On the relation between quantum mechanical and neo-mechanistic ontologies and explanatory strategies.Meinard Kuhlmann & Stuart Glennan - 2014 - European Journal for Philosophy of Science 4 (3):337-359.
    Advocates of the New Mechanicism in philosophy of science argue that scientific explanation often consists in describing mechanisms responsible for natural phenomena. Despite its successes, one might think that this approach does not square with the ontological strictures of quantum mechanics. New Mechanists suppose that mechanisms are composed of objects with definite properties, which are interconnected via local causal interactions. Quantum mechanics calls these suppositions into question. Since mechanisms are hierarchical it appears that even macroscopic mechanisms (...)
    Direct download (6 more)  
     
    Export citation  
     
    Bookmark   13 citations  
  36.  35
    A Local-Realistic Model of Quantum Mechanics Based on a Discrete Spacetime.Antonio Sciarretta - 2018 - Foundations of Physics 48 (1):60-91.
    This paper presents a realistic, stochastic, and local model that reproduces nonrelativistic quantum mechanics results without using its mathematical formulation. The proposed model only uses integer-valued quantities and operations on probabilities, in particular assuming a discrete spacetime under the form of a Euclidean lattice. Individual particle trajectories are described as random walks. Transition probabilities are simple functions of a few quantities that are either randomly associated to the particles during their preparation, or stored in the lattice (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark  
  37.  37
    On time, causation and explanation in the causally symmetric Bohmian model of quantum mechanics.Joseph Berkovitz - 2017 - In Philippe Huneman & Christophe Bouton (eds.), Time of Nature and the Nature of Time: Philosophical Perspectives of Time in Natural Sciences. Cham: Springer. pp. 139-172.
    Quantum mechanics portrays the universe as involving non-local influences that are difficult to reconcile with relativity theory. By postulating backward causation, retro-causal interpretations of quantum mechanics could circumvent these influences and accordingly reconcile quantum mechanics with relativity. The postulation of backward causation poses various challenges for the retro-causal interpretations of quantum mechanics and for the existing conceptual frameworks for analyzing counterfactual dependence, causation and causal explanation. In this chapter, we analyze the nature (...)
    No categories
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  38.  16
    Random World and Quantum Mechanics.Jerzy Król, Krzysztof Bielas & Torsten Asselmeyer-Maluga - 2023 - Foundations of Science 28 (2):575-625.
    Quantum mechanics (QM) predicts probabilities on the fundamental level which are, via Born probability law, connected to the formal randomness of infinite sequences of QM outcomes. Recently it has been shown that QM is algorithmic 1-random in the sense of Martin–Löf. We extend this result and demonstrate that QM is algorithmic $$\omega$$ -random and generic, precisely as described by the ’miniaturisation’ of the Solovay forcing to arithmetic. This is extended further to the result that QM becomes Zermelo–Fraenkel Solovay (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  39.  39
    Classical probability and the quantum mechanical trace formulation for expectations.Peter D. Finch - 1982 - Foundations of Physics 12 (4):327-345.
    The trace formulation of quantum mechanical expectations is derived in a classical deterministic setting by averaging over an assembly of states. Interference of probabilities is discussed and its usual Hilbert space formulation is questioned. Nevertheless, it is shown that the observable predictions of quantum statics remain unchanged in the framework developed here.
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  40. A Mathematical Model of Quantum Computer by Both Arithmetic and Set Theory.Vasil Penchev - 2020 - Information Theory and Research eJournal 1 (15):1-13.
    A practical viewpoint links reality, representation, and language to calculation by the concept of Turing (1936) machine being the mathematical model of our computers. After the Gödel incompleteness theorems (1931) or the insolvability of the so-called halting problem (Turing 1936; Church 1936) as to a classical machine of Turing, one of the simplest hypotheses is completeness to be suggested for two ones. That is consistent with the provability of completeness by means of two independent Peano arithmetics discussed in Section (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark  
  41. Causal inference in quantum mechanics: A reassessment.Mauricio Suárez - 2007 - In Frederica Russo & Jon Williamson (eds.), Causality and Probability in the Sciences. College Publications. pp. 65-106.
    There has been an intense discussion, albeit largely an implicit one, concerning the inference of causal hypotheses from statistical correlations in quantum mechanics ever since John Bell’s first statement of his notorious theorem in 1966. As is well known, its focus has mainly been the so-called Einstein-Podolsky-Rosen (“EPR”) thought experiment, and the ensuing observed correlations in real EPR like experiments. But although implicitly the discussion goes as far back as Bell’s work, it is only in the last two (...)
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark   14 citations  
  42.  50
    Highlighting the Mechanism of the Quantum Speedup by Time-Symmetric and Relational Quantum Mechanics.Giuseppe Castagnoli - 2016 - Foundations of Physics 46 (3):360-381.
    Bob hides a ball in one of four drawers. Alice is to locate it. Classically she has to open up to three drawers, quantally just one. The fundamental reason for this quantum speedup is not known. The usual representation of the quantum algorithm is limited to the process of solving the problem. We extend it to the process of setting the problem. The number of the drawer with the ball becomes a unitary transformation of the random outcome of (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  43. Towards a Realistic Interpretation of Quantum Mechanics Providing a Model of the Physical World.Emilio Santos - 2015 - Foundations of Science 20 (4):357-386.
    It is argued that a realistic interpretation of quantum mechanics is possible and useful. Current interpretations, from “Copenhagen” to “many worlds” are critically revisited. The difficulties for intuitive models of quantum physics are pointed out and possible solutions proposed. In particular the existence of discrete states, the quantum jumps, the alleged lack of objective properties, measurement theory, the probabilistic character of quantum physics, the wave–particle duality and the Bell inequalities are analyzed. The sketch of a (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  44.  11
    Limitations to Genuine Measurements in Ontological Models of Quantum Mechanics.Roderich Tumulka - 2022 - Foundations of Physics 52 (5):1-7.
    Given an ontological model of a quantum system, a “genuine measurement,” as opposed to a quantum measurement, means an experiment that determines the value of a beable, i.e., of a variable that, according to the model, has an actual value in nature before the experiment. We prove a theorem showing that in every ontological model, it is impossible to measure all beables. Put differently, there is no experiment that would reliably determine the ontic state. This (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  45.  54
    Rethinking Individuality in Quantum Mechanics.Nathan Moore - 2019 - Dissertation, University of Western Ontario
    One recent debate in philosophy of physics has centered whether quantum particles are individuals or not. The received view is that particles are not individuals and the standard methodology is to approach the question via the structure of quantum theory. I challenge both the received view and the standard methodology. I contend not only that the structure of quantum theory is not the right place to look for conditions of individuality that quantum particles may or may (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark  
  46.  63
    The Psychology of Uncertainty and Three-Valued Truth Tables.Jean Baratgin, Guy Politzer, David E. Over & Tatsuji Takahashi - 2018 - Frontiers in Psychology 9:394374.
    Psychological research on people’s understanding of natural language connectives has traditionally used truth table tasks, in which participants evaluate the truth or falsity of a compound sentence given the truth or falsity of its components in the framework of propositional logic. One perplexing result concerned the indicative conditional if A then C which was often evaluated as true when A and C are true, false when A is true and C is false but irrelevant“ (devoid of value) when A is (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   15 citations  
  47.  14
    Complementary Observables in Quantum Mechanics.Jukka Kiukas, Pekka Lahti, Juha-Pekka Pellonpää & Kari Ylinen - 2019 - Foundations of Physics 49 (6):506-531.
    We review the notion of complementarity of observables in quantum mechanics, as formulated and studied by Paul Busch and his colleagues over the years. In addition, we provide further clarification on the operational meaning of the concept, and present several characterisations of complementarity—some of which new—in a unified manner, as a consequence of a basic factorisation lemma for quantum effects. We work out several applications, including the canonical cases of position–momentum, position–energy, number–phase, as well as periodic (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  48.  26
    A Probabilistic Model of Spin and Spin Measurements.Arend Niehaus - 2016 - Foundations of Physics 46 (1):3-13.
    Several theoretical publications on the Dirac equation published during the last decades have shown that, an interpretation is possible, which ascribes the origin of electron spin and magnetic moment to an autonomous circular motion of the point-like charged particle around a fixed centre. In more recent publications an extension of the original so called “Zitterbewegung Interpretation” of quantum mechanics was suggested, in which the spin results from an average of instantaneous spin vectors over a Zitterbewegung period. We (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  49.  25
    A Separable, Dynamically Local Ontological Model of Quantum Mechanics.Jacques Pienaar - 2016 - Foundations of Physics 46 (1):104-119.
    A model of reality is called separable if the state of a composite system is equal to the union of the states of its parts, located in different regions of space. Spekkens has argued that it is trivial to reproduce the predictions of quantum mechanics using a separable ontological model, provided one allows for arbitrary violations of ‘dynamical locality’. However, since dynamical locality is strictly weaker than local causality, this leaves open the question of whether an (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  50. On the Possibility of Ontological Models of Quantum Mechanics.D. J. Miller & Matt Farr - manuscript
    It is an unresolved question in quantum mechanics whether quantum states apply to individual quantum systems, or to ensembles of quantum systems. We show by way of a thought experiment that quantum states apply only to ensembles of quantum systems. A further unresolved question is whether quantum systems possess ontic states. If a quantum state is the state of an ensemble, as we claim, the answer to this question is that (...) states are not ontic. However, a notable recent result in quantum foundations shows that if there are any ontic states at all, then the quantum state must be ontic. Collectively, these two results imply that there are no ontic states. We examine the assumptions required for these results, and suggest that the retrospective effect on state preparations by entangling measurements provides good reason for relaxing the assumption of preparation independence at the ontic level. (shrink)
    Direct download  
     
    Export citation  
     
    Bookmark  
1 — 50 / 986