Results for 'NSP-interacting kinase'

990 found
Order:
  1.  33
    NIK1, a host factor specialized in antiviral defense or a novel general regulator of plant immunity?Joao P. B. Machado, Otavio J. B. Brustolini, Giselle C. Mendes, Anésia A. Santos & Elizabeth P. B. Fontes - 2015 - Bioessays 37 (11):1236-1242.
    NIK1 is a receptor‐like kinase involved in plant antiviral immunity. Although NIK1 is structurally similar to the plant immune factor BAK1, which is a key regulator in plant immunity to bacterial pathogens, the NIK1‐mediated defenses do not resemble BAK1 signaling cascades. The underlying mechanism for NIK1 antiviral immunity has recently been uncovered. NIK1 activation mediates the translocation of RPL10 to the nucleus, where it interacts with LIMYB to fully down‐regulate translational machinery genes, resulting in translation inhibition of host and (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  2.  18
    Tyrosine kinase receptors in the control of epithelial growth and morphogenesis during development.Carmen Birchmeier, Eva Sonnenberg, K. Michael Weidner & Barbara Walter - 1993 - Bioessays 15 (3):185-190.
    The c‐ros, c‐met and c‐neu genes encode receptor‐type tyrosine kinases and were originally identified because of their oncogenic potential. However, recent progress in the analysis of these receptors and their respective ligands indicate that they do not mediate exclusively mitogenic signals. Rather, they can induce cell movement, differentiation or morphogenesis of epithelial cells in culture. Interestingly, the discussed receptors are expressed in embryonal epithelia, whereas direct and indirect evidence shows that the corresponding ligands are produced in mesenchymal cells. In development, (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  3.  14
    Signaling through focal adhesion kinase.Steven K. Hanks & Thomas R. Polte - 1997 - Bioessays 19 (2):137-145.
    Focal adhesion kinase (FAK) is a nonreceptor protein‐tyrosine kinase implicated in controlling cellular responses to the engagement of cell‐surface integrins, including cell spreading and migration, survival and proliferation. Aberrant FAK signaling may contribute to the process of cell transformation by certain oncoproteins, including v‐Src. Progress toward elucidating the events leading to FAK activation following integrin‐mediated cell adhesion, as well as events downstream of FAK, has come through the identification of FAK phosphorylation sites and interacting proteins. A signaling (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  4.  33
    The Many Roles of Type II Phosphatidylinositol 4-Kinases in Membrane Trafficking: New Tricks for Old Dogs.Shane Minogue - 2018 - Bioessays 40 (2):1700145.
    The type II phosphatidylinositol 4-kinases produce the lipid phosphatidylinositol 4-phosphate and participate in a confusing variety of membrane trafficking and signaling roles. This review argues that both historical and contemporary evidence supports the function of the PI4KIIs in numerous trafficking pathways, and that the key to understanding the enzymatic regulation is through membrane interaction and the intrinsic membrane environment. By summarizing new research and examining the trafficking roles of the PI4KIIs in the context of recently solved molecular structures, I highlight (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  5.  3
    Checking in on Cds1 (Chk2): A checkpoint kinase and tumor suppressor.Clare H. McGowan - 2002 - Bioessays 24 (6):502-511.
    Together, DNA repair and checkpoint responses ensure the integrity of the genome. Coordination of cell cycle checkpoints and DNA repair are especially important following genotoxic radiation or chemotherapy, during which unusually high loads of DNA damage are sustained. In mammalian cells, the checkpoint kinase, Cds1 (also known as Chk2) is activated by ATM in response to DNA damage. The role of Cds1 as a checkpoint kinase depends on its ability to phosphorylate cell cycle regulators such p53, Cdc25 and (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  6.  22
    The assembly of signalling complexes by receptor tyrosine kinases.George Panayotou & Michael D. Waterfield - 1993 - Bioessays 15 (3):171-177.
    Cell proliferation in response to growth factors is mediated by specific high affinity receptors. Ligand‐binding by receptors of the protein tyrosine kinase family results in the stimulation of several intracellular signal transduction pathways. Key signalling enzymes are recruited to the plasma membrane through the formation of stable complexes with activated receptors. These interactions are mediated by the conserved, non‐catalytic SH2 domains present in the signalling molecules, which bind with high affinity and specificity to tyrosine‐phosphorylated sequences on the receptors. The (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   3 citations  
  7.  8
    JNK‐interacting protein 4 is a central molecule for lysosomal retrograde trafficking.Yukiko Sasazawa, Nobutaka Hattori & Shinji Saiki - 2023 - Bioessays 45 (11):2300052.
    Lysosomal positioning is an important factor in regulating cellular responses, including autophagy. Because proteins encoded by disease‐responsible genes are involved in lysosomal trafficking, proper intracellular lysosomal trafficking is thought to be essential for cellular homeostasis. In the past few years, the mechanisms of lysosomal trafficking have been elucidated with a focus on adapter proteins linking motor proteins to lysosomes. Here, we outline recent findings on the mechanisms of lysosomal trafficking by focusing on adapter protein c‐Jun NH2‐terminal kinaseinteracting protein (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  8.  13
    Structure‐function relationships in Src family and related protein tyrosine kinases.Giulio Superti-Furga & Sara A. Courtneidge - 1995 - Bioessays 17 (4):321-330.
    There is increasing evidence to suggest that cytoplasmic tyrosine kinases of the Src family have a pivotal role in the regulation of a number of cellular processes. Members of this family have been implicated in cellular responses to a variety of extracellular signals, such as those arising from growth factors and cell‐cell interactions, as well as in differentiative and developmental processes in both vertebrates and invertebrates. A better understanding of the regulation and of the structure‐function relationships of these enzymes might (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  9.  17
    Ras regulatory interactions: Novel targets for anti‐cancer intervention?George C. Prendergast & Jackson B. Gibbs - 1994 - Bioessays 16 (3):187-191.
    Advances in the understanding of Ras oncoprotein function suggest novel points for anti‐tumor intervention. First, upstream‐acting guanine nucleotide exchange factors and SH2/SH3 domain‐containing adaptor proteins that link Ras with growth factor receptor tyrosine kinases have recently been characterized. Second, work on downstream‐acting Ras effector functions including the Ras GTPase‐activating protein (p120GAP) and the Raf kinase has revealed direct biochemical interactions that are functionally required for oncogenic Ras signalling. We summarize progress in these areas and discuss the potential for novel (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  10.  49
    Close encounters of the third kind: disordered domains and the interactions of proteins.Peter Tompa, Monika Fuxreiter, Christopher J. Oldfield, Istvan Simon, A. Keith Dunker & Vladimir N. Uversky - 2009 - Bioessays 31 (3):328-335.
    Protein–protein interactions are thought to be mediated by domains, which are autonomous folding units of proteins. Recently, a second type of interaction has been suggested, mediated by short segments termed linear motifs, which are related to recognition elements of intrinsically disordered regions. Here, we propose a third kind of protein–protein recognition mechanism, mediated by disordered regions longer than 20–30 residues. Bioinformatics predictions and well‐characterized examples, such as the kinase‐inhibitory domain of Cdk inhibitors and the Wiskott–Aldrich syndrome protein (WASP)‐homology domain (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  11.  18
    Close encounters of the third kind: disordered domains and the interactions of proteins.Peter Tompa, Monika Fuxreiter, Christopher J. Oldfield, Istvan Simon, A. Keith Dunker & Vladimir N. Uversky - 2009 - Bioessays 31 (3):328-335.
    Protein–protein interactions are thought to be mediated by domains, which are autonomous folding units of proteins. Recently, a second type of interaction has been suggested, mediated by short segments termed linear motifs, which are related to recognition elements of intrinsically disordered regions. Here, we propose a third kind of protein–protein recognition mechanism, mediated by disordered regions longer than 20–30 residues. Bioinformatics predictions and well‐characterized examples, such as the kinase‐inhibitory domain of Cdk inhibitors and the Wiskott–Aldrich syndrome protein (WASP)‐homology domain (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  12.  18
    PuF, an antimetastatic and developmental signaling protein, interacts with the Alzheimer's amyloid-beta precursor protein via a tissue-specific proximal regulatory element.D. K. Lahiri, B. Maloney, J. T. Rogers & Y. W. Ge - 2013 - Bmc Genomics 14:68.
    BACKGROUND: Alzheimer's disease is intimately tied to amyloid-beta peptide. Extraneuronal brain plaques consisting primarily of Abeta aggregates are a hallmark of AD. Intraneuronal Abeta subunits are strongly implicated in disease progression. Protein sequence mutations of the Abeta precursor protein account for a small proportion of AD cases, suggesting that regulation of the associated gene may play a more important role in AD etiology. The APP promoter possesses a novel 30 nucleotide sequence, or "proximal regulatory element" , at -76/-47, from the (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  13.  4
    Swap and stop – Kinetochores play error correction with microtubules.Harinath Doodhi & Tomoyuki U. Tanaka - 2022 - Bioessays 44 (5):2100246.
    Correct chromosome segregation in mitosis relies on chromosome biorientation, in which sister kinetochores attach to microtubules from opposite spindle poles prior to segregation. To establish biorientation, aberrant kinetochore–microtubule interactions must be resolved through the error correction process. During error correction, kinetochore–microtubule interactions are exchanged (swapped) if aberrant, but the exchange must stop when biorientation is established. In this article, we discuss recent findings in budding yeast, which have revealed fundamental molecular mechanisms promoting this “swap and stop” process for error correction. (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  14.  16
    Mechanisms regulating phosphatase specificity and the removal of individual phosphorylation sites during mitotic exit.Samuel Rogers, Rachael McCloy, D. Neil Watkins & Andrew Burgess - 2016 - Bioessays 38 (S1):24-32.
    Entry into mitosis is driven by the activity of kinases, which phosphorylate over 7000 proteins on multiple sites. For cells to exit mitosis and segregate their genome correctly, these phosphorylations must be removed in a specific temporal order. This raises a critical and important question: how are specific phosphorylation sites on an individual protein removed? Traditionally, the temporal order of dephosphorylation was attributed to decreasing kinase activity. However, recent evidence in human cells has identified unique patterns of dephosphorylation during (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  15.  32
    Trafficking and signaling pathways of nuclear localizing protein ligands and their receptors.Howard M. Johnson, Prem S. Subramaniam, Sjur Olsnes & David A. Jans - 2004 - Bioessays 26 (9):993-1004.
    Interaction of ligands such as epidermal growth factor and interferon‐γ with the extracellular domains of their plasma membrane receptors results in internalization followed by translocation into the nucleus of the ligand and/or receptor. There has been reluctance, however, to ascribe signaling importance to this, the focus instead being on second messenger pathways, including mobilization of kinases and inducible transcription factors (TFs). The latter, however, fails to explain the fact that so many ligands stimulate the same second messenger cascades/TFs, and yet (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  16.  48
    Phosphatidylinositol 4,5‐bisphosphate: Targeted production and signaling.Yue Sun, Narendra Thapa, Andrew C. Hedman & Richard A. Anderson - 2013 - Bioessays 35 (6):513-522.
    Phosphatidylinositol 4,5‐bisphosphate (PI4,5P2) is a key lipid signaling molecule that regulates a vast array of biological activities. PI4,5P2 can act directly as a messenger or can be utilized as a precursor to generate other messengers: inositol trisphosphate, diacylglycerol, or phosphatidylinositol 3,4,5‐trisphosphate. PI4,5P2 interacts with hundreds of different effector proteins. The enormous diversity of PI4,5P2 effector proteins and the spatio‐temporal control of PI4,5P2 generation allow PI4,5P2 signaling to control a broad spectrum of cellular functions. PI4,5P2 is synthesized by phosphatidylinositol phosphate kinases (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  17.  43
    A Link Between Alzheimer's and Type II Diabetes Mellitus? Ca+2 -Mediated Signal Control and Protein Localization.Yuko Tsutsui & Franklin A. Hays - 2018 - Bioessays 40 (6):1700219.
    We propose protein localization dependent signal activation (PLDSA) as a model to describe pre‐existing protein partitioning between the cytosol, and membrane surface, as a means to modulate signal activation, specificity, and robustness. We apply PLDSA to explain possible molecular links between type II diabetes mellitus (T2DM) and Alzheimer's disease (AD) by describing Ca+2‐mediated interactions between the Src non‐receptor tyrosine kinase and p52Shc adaptor protein. We suggest that these interactions may serve as a contributing factor to disease development and progression. (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  18.  56
    Transcriptional regulation of beta-secretase by p25/cdk5 leads to enhanced amyloidogenic processing.Y. Wen, W. H. Yu, B. Maloney, J. Bailey, J. Ma, I. Marie, T. Maurin, L. Wang, H. Figueroa, M. Herman, P. Krishnamurthy, L. Liu, E. Planel, L. F. Lau, D. K. Lahiri & K. Duff - 2008 - Neuron 57:680-90.
    Cyclin-dependent kinase 5 has been implicated in Alzheimer's disease pathogenesis. Here, we demonstrate that overexpression of p25, an activator of cdk5, led to increased levels of BACE1 mRNA and protein in vitro and in vivo. A p25/cdk5 responsive region containing multiple sites for signal transducer and activator of transcription was identified in the BACE1 promoter. STAT3 interacts with the BACE1 promoter, and p25-overexpressing mice had elevated levels of pSTAT3 and BACE1, whereas cdk5-deficient mice had reduced levels. Furthermore, mice with (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  19.  9
    Neu and its ligands: From an oncogene to neural factors.Elior Peles & Yosef Yarden - 1993 - Bioessays 15 (12):815-824.
    Transmembrane receptor tyrosine kinases that bind to peptide factors transmit essential growth and differentiation signals. A growing list of orphan receptors, of which some are oncogenic, holds the promise that many unknown ligands may be discovered by tracking the corresponding surface molecules. The neu gene (also called erbB‐2 and HER‐2) encodes such a receptor tyrosine kinase whose oncogenic potential is released in the developing rodent nervous system through a point mutation. Amplification and overexpression of neu are thought to contribute (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  20.  6
    Controlling contacts—Molecular mechanisms to regulate organelle membrane tethering.Suzan Kors, Smija M. Kurian, Joseph L. Costello & Michael Schrader - 2022 - Bioessays 44 (11):2200151.
    In recent years, membrane contact sites (MCS), which mediate interactions between virtually all subcellular organelles, have been extensively characterized and shown to be essential for intracellular communication. In this review essay, we focus on an emerging topic: the regulation of MCS. Focusing on the tether proteins themselves, we discuss some of the known mechanisms which can control organelle tethering events and identify apparent common regulatory hubs, such as the VAP interface at the endoplasmic reticulum (ER). We also highlight several currently (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  21.  18
    “JIP”ing along the axon: the complex roles of JIPs in axonal transport.Sandhya P. Koushika - 2008 - Bioessays 30 (1):10-14.
    JIPs are JNK interacting proteins and bind to JNK cascade kinases. JIP1 and JIP3 were known to be adaptors linking cargo to Kinesin‐I, a major molecular motor for axonal transport. Recent research sheds further light on JIPs' complex roles in axonal transport, namely in activation of Kinesin‐I and in cargo release. In Drosophila, APLIP1/JIP1 allows the Kinesin‐I complex to enable cargo release through activation of JNK signaling.1 In mammalian cell culture, JIP1 is necessary and, together with UNC‐76/FEZ1, sufficient for (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  22.  13
    Towards unraveling the complexity of T cell signal transduction.Georg Zenner, Jan Dirk zur Hausen, Paul Burn & Tomas Mustelin - 1995 - Bioessays 17 (11):967-975.
    Activation of resting T lymphocytes through the T cell antigen receptor complex is initiated by critical phosphorylation and dephosphorylation events that regulate the function and interaction of a number of signaling molecules. Key elements in these reactions are members of the Src, Syk and Csk families of protein tyrosine kinases (PTKs) and the phosphotyrosine phosphatases (PTPases) that regulate and/or counteract them, such as CD45. The PTKs can autophosphorylate and phosphorylate each other at multiple sites and, as the result of these (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  23.  22
    Signalling pathways and the host‐parasite relationship: Putative targets for control interventions against schistosomiasis.Hong You, Geoffrey N. Gobert, Malcolm K. Jones, Wenbao Zhang & Donald P. McManus - 2011 - Bioessays 33 (3):203-214.
    A better understanding of how schistosomes exploit host nutrients, neuro‐endocrine hormones and signalling pathways for growth, development and maturation may provide new insights for improved interventions in the control of schistosomiasis. This paper describes recent advances in the identification and characterisation of schistosome tyrosine kinase and signalling pathways. It discusses the potential intervention value of insulin signalling, which may play an important role in glucose uptake and carbohydrate metabolism in schistosomes, providing the nutrients essential for parasite growth, development and, (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  24.  14
    P‐TEFb goes viral.Justyna Zaborowska, Nur F. Isa & Shona Murphy - 2016 - Bioessays 38 (S1):75-85.
    Positive transcription elongation factor b (P‐TEFb), which comprises cyclin‐dependent kinase 9 (CDK9) kinase and cyclin T subunits, is an essential kinase complex in human cells. Phosphorylation of the negative elongation factors by P‐TEFb is required for productive elongation of transcription of protein‐coding genes by RNA polymerase II (pol II). In addition, P‐TEFb‐mediated phosphorylation of the carboxyl‐terminal domain (CTD) of the largest subunit of pol II mediates the recruitment of transcription and RNA processing factors during the transcription cycle. (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  25.  37
    The insulin receptor changes conformation in unforeseen ways on ligand binding: Sharpening the picture of insulin receptor activation.Colin W. Ward, John G. Menting & Michael C. Lawrence - 2013 - Bioessays 35 (11):945-954.
    Unraveling the molecular detail of insulin receptor activation has proved challenging, but a major advance is the recent determination of crystallographic structures of insulin in complex with its primary binding site on the receptor. The current model for insulin receptor activation is that two distinct surfaces of insulin monomer engage sequentially with two distinct binding sites on the extracellular surface of the insulin receptor, which is itself a disulfide‐linked (αβ)2 homodimer. In the process, conformational changes occur both within the hormone (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  26.  44
    Signal transduction in bacterial chemotaxis.Melinda D. Baker, Peter M. Wolanin & Jeffry B. Stock - 2006 - Bioessays 28 (1):9-22.
    Motile bacteria respond to environmental cues to move to more favorable locations. The components of the chemotaxis signal transduction systems that mediate these responses are highly conserved among prokaryotes including both eubacterial and archael species. The best‐studied system is that found in Escherichia coli. Attractant and repellant chemicals are sensed through their interactions with transmembrane chemoreceptor proteins that are localized in multimeric assemblies at one or both cell poles together with a histidine protein kinase, CheA, an SH3‐like adaptor protein, (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   4 citations  
  27.  9
    Silent chromatin in yeast: an orchestrated medley featuring Sir3p.Elisa M. Stone & Lorraine Pillus - 1998 - Bioessays 20 (1):30-40.
    Extensive regions of chromosomes can be transcriptionally repressed through silencing mechanisms mediated by complex chromatin structures. One of the most refined molecular portraits of silenced chromatin comes from studies of the silent mating‐type loci and telomeres of S. cerevisiae. In this budding yeast, the Sir3p silent information regulator emerges as a critically important silencing component that interacts with nucleosomes and other silencing proteins. Not only is it essential for silencing, but Sir3p is also capable of spreading silenced chromatin when its (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  28.  18
    Reversible histone modification and the chromosome cell cycle.E. Morton Bradbury - 1992 - Bioessays 14 (1):9-16.
    During the eukaryotic cell cycle, chromosomes undergo large structural transitions and spatial rearrangements that are associated with the major cell functions of genome replication, transcription and chromosome condensation to metaphase chromosomes. Eukaryotic cells have evolved cell cycle dependent processes that modulate histone:DNA interactions in chromosomes. These are; (i) acetylations of lysines; (ii) phosphorylations of serines and threonines and (iii) ubiquitinations of lysines. All of these reversible modifications are contained in the well‐defined very basic N‐ and C‐ terminal domains of histones. (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   3 citations  
  29. Control of epithelial cell structure and developmental fate: Lessons from Helicobacter pylori.Hitomi Mimuro, Douglas E. Berg & Chihiro Sasakawa - 2008 - Bioessays 30 (6):515-520.
    Valuable insights into eukaryotic regulatory circuits can emerge from studying interactions of bacterial pathogens such as Helicobacter pylori with host tissues. H. pylori uses a type IV secretion system (T4SS) to deliver its CagA virulence protein to epithelial cells, where much of it becomes phosphorylated. CagA's phosphorylated and non‐phosphorylated forms each interact with host regulatory proteins to alter cell structure and cell fate. Kwok and colleagues1 showed that CagA destined for phosphorylation is delivered using host integrin as receptor and H. (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  30.  14
    Fanconi anaemia proteins: Major roles in cell protection against oxidative damage.Giovanni Pagano & Hagop Youssoufian - 2003 - Bioessays 25 (6):589-595.
    Fanconi anaemia (FA) is a cancer‐prone genetic disorder that is characterised by cytogenetic instability and redox abnormalities. Although rare subtypes of FA (B, D1 and D2) have been implicated in DNA repair through links with BRCA1 and BRCA2, such a role has yet to be demonstrated for gene products of the common subtypes. Instead, these products have been strongly implicated in xenobiotic metabolism and redox homeostasis through interactions of FANCC with cytochrome P‐450 reductase and with glutathione S‐transferase, and of FANCG (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  31.  21
    Modulation of cAMP effects by Ca 2+ /calmodulin.Catherine J. Pallen, Rajendra K. Sharma & Jerry H. Wang - 1985 - Bioessays 2 (3):113-117.
    The second messenger molecules cAMP and Ca2+ regulate a large number of eukaryotic cellular events. cAMP acts on protein kinases and Ca2+ works through a ubiquitous calcium‐binding protein, calmodulin. The two systems are not independent, however, but interact in several important fashions. These interactions, and, in particular, the modulation of the cAMP signal by two Ca2+/calmodulin‐regulated proteins, cyclic nucleotide phosphodiesterase and calcineurin, are described here.
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  32.  13
    PDZ Domains: Targeting signalling molecules to sub‐membranous sites.Christopher P. Ponting, Christopher Phillips, Kay E. Davies & Derek J. Blake - 1997 - Bioessays 19 (6):469-479.
    PDZ (also called DHR or GLGF) domains are found in diverse membraneassociated proteins including members of the MAGUK family of guanylate kinase homologues, several protein phosphatases and kinases, neuronal nitric oxide synthase, and several dystrophin‐associated proteins, collectively known as syntrophins. Many PDZ domain‐containing proteins appear to be localised to highly specialised submembranous sites, suggesting their participation in cellular junction formation, receptor or channel clustering, and intracellular signalling events. PDZ domains of several MAGUKs interact with the C‐terminal polypeptides of a (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  33.  12
    Eicosanoids and aspirin in immune cell function.J. Martyn Bailey - 1985 - Bioessays 3 (2):60-65.
    Clonal expansion of T‐lymphocyte populations results from interactions of antigenic structures presented in combination with accessory cells (macrophages) and antibody recognition sites on the surface of T cells. The resulting activation of a membrane phospholipase C plays a crucial role in lymphocyte responses by releasing diglyceride and PIP3. The released diglyceride activates a cellular protein kinase C while PIP3 stimulates Ca2+ influx. Arachidonic acid released by the action of diglyceride lipase serves as substrate for the synthesis of bioactive eicosanoids (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  34.  17
    Β‐Catenin at the Centrosome.Bertrade C. Mbom, W. James Nelson & Angela Barth - 2013 - Bioessays 35 (9):804-809.
    Beta‐catenin is a multifunctional protein with critical roles in cell‐cell adhesion, Wnt‐signaling and the centrosome cycle. Whereas the roles of β‐catenin in cell‐cell adhesion and Wnt‐signaling have been studied extensively, the mechanism(s) involving β‐catenin in centrosome functions are poorly understood. β‐Catenin localizes to centrosomes and promotes mitotic progression. NIMA‐related protein kinase 2 (Nek2), which stimulates centrosome separation, binds to and phosphorylates β‐catenin. β‐Catenin interacting proteins involved in Wnt signaling such as adenomatous polyposis coli, Axin, and GSK3β, are also (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark  
  35.  9
    Highway to hell‐thy meiotic divisions: Chromosome passenger complex functions driven by microtubules.Kim S. McKim - 2022 - Bioessays 44 (1):2100202.
    The chromosome passenger complex (CPC) localizes to chromosomes and microtubules, sometimes simultaneously. The CPC also has multiple domains for interacting with chromatin and microtubules. Interactions between the CPC and both the chromatin and microtubules is important for spindle assembly and error correction. Such dual chromatin‐microtubule interactions may increase the concentration of the CPC necessary for efficient kinase activity while also making it responsive to specific conditions or structures in the cell. CPC‐microtubule dependent functions are considered in the context (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  36.  21
    Closing the gaps among a web of DNA repair disorders.Rhett J. Michelson & Ted Weinert - 2000 - Bioessays 22 (11):966-969.
    As recently as six years ago, three human diseases with similar phenotypes were mistakenly believed to be caused by a single genetic defect. The three diseases, Ataxia-telangiectasia, Nijmegen breakage syndrome, and an AT-like disorder are now known, however, to have defects in three separate genes: ATM, NBS1, and MRE11. Furthermore, new recent studies have shown now that all three gene products interact; the ATM kinase phosphorylates NBS1,1 which, in turn, associates with MRE11 to regulate DNA repair. Remarkably or expectedly, (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  37.  10
    Selective phospholipase C activation.Matthew Wahl & Graham Carpenter - 1991 - Bioessays 13 (3):107-113.
    Phospholipase C is a family of cellular proteins believed to play a significant role in the intracellular signaling mechanisms utilized by diverse hormones. One class of hormones, polypeptide growth factors, elicits its influence on cellular function through stimulation of cell surface receptor tyrosine kinase activity. Certain growth factors appear to stimulate cellular phospholipase C activity by selective, receptor‐mediated tyrosine phosphorylation of the phospholipase C‐γ1 isozyme. While the role of phospholipase C activity in growth factor regulation of cell proliferation remains (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  38.  19
    Molecular mechanisms of segmental patterning in the vertebrate hindbrain and neural crest.David G. Wilkinson - 1993 - Bioessays 15 (8):499-505.
    Recent work has shown that segmentation underlies the patterning of the vertebrate hindbrain and its neural crest derivatives. Several genes have been identified with segment‐restricted expression, and evidence is now emerging regarding their function and regulatory relationships. The expression patterns of Hox genes and the phenotype of null mutants indicate roles in specifying segment identity. A zinc finger gene Krox‐20 is a segment‐specific regulator of Hox expression, and it seems probable that retinoic acid receptors also regulate Hox genes in the (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  39.  11
    Mitosis‐specific phosphorylation of caldesmon: Possible molecular mechanism of cell rounding during mitosis.Shigeko Yamashiro & Fumio Matsumura - 1991 - Bioessays 13 (11):563-568.
    One of the profound changes in cellular morphology during mitosis is a massive alteration in the organization of microfilament cytoskeleton. It has been recently discovered that nonmuscle caldesmon, an actin and calmodulin binding microfilament‐associated protein of relative molecular mass Mr = 83000, is dissociated from microfilaments during mitosis, apparently as a consequence of mitosis‐specific phosphorylation. cdc2 kinase, which is a catalytic subunit of MPF (maturation or mitosis promoting factor), is found to be responsible for the mitosis‐specific phosphorylation of caldesmon. (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  40.  4
    Specification of cell fate in the developing eye of Drosophila.Konrad Basler & Ernst Hafen - 1991 - Bioessays 13 (12):621-631.
    Determination of cell fate in the developing eye of Drosophila depends on a precise sequence of cellular interactions which generate the stereotypic array of ommatidia. In the eye imaginal disc, an initially unpatterned epithelial sheath of cells, the first step in this process may be the specification of R8 photoreceptor cells at regular intervals. Genes such as Notch and scabrous, known to be involved in bristle development, alos participate in this process, suggesting that the specification of ommatidial founder cells and (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  41.  8
    Specificity within the EGF family/ErbB receptor family signaling network.David J. Riese & David F. Stern - 1998 - Bioessays 20 (1):41-48.
    Recent years have witnessed tremendous growth in the epidermal growth factor (EGF) family of peptide growth factors and the ErbB family of tyrosine kinases, the receptors for these factors. Accompanying this growth has been an increased appreciation for the roles these molecules play in tumorigenesis and in regulating cell proliferation and differentiation during development. Consequently, a significant question has been how diverse biological responses are specified by these hormones and receptors. Here we discuss several characteristics of hormone-receptor interactions and receptor (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   3 citations  
  42.  26
    hnRNP K: One protein multiple processes.Karol Bomsztyk, Oleg Denisenko & Jerzy Ostrowski - 2004 - Bioessays 26 (6):629-638.
    Since its original identification as a component of the heterogeneous nuclear ribonucleoprotein (hnRNP) complex, K protein has been found not only in the nucleus but also in the cytoplasm and mitochondria and is implicated in chromatin remodeling, transcription, splicing and translation processes. K protein contains multiple modules that, on one hand, bind kinases while, on the other hand, recruit chromatin, transcription, splicing and translation factors. Moreover, the K‐ protein‐mediated interactions are regulated by signaling cascades. These observations are consistent with K (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  43.  9
    Yeast as a model system for understanding the control of DNA replication in eukaryotes.Rachel Bartlett & Paul Nurse - 1990 - Bioessays 12 (10):457-463.
    In the yeasts Saccharomyces cerevisiae and Schizosaccharomyces pombe, the initiation of DNA replication is controlled at a point called START. At this point, the cellular environment is assessed; only if conditions are appropriate do cells traverse START, thus becoming committed to initiate DNA replication and complete the remainder of the cell cycle. The cdc2+ / CDC28+ gene, encoding the protein kinase p34, is a key element in this complex control. The identification of structural and functional homologues of p34 suggests (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  44.  7
    The regulation of superoxide production by the NADPH oxidase of neutrophils and other mammalian cells.Owen T. G. Jones - 1994 - Bioessays 16 (12):919-923.
    Superoxide is produced by a NADPH oxidase of phagocytic cells and contributes to their microbicidal activities. The oxidase is activated when receptors in the neutrophil plasma membrane bind to the target microbe. These receptors recognise antibodies and complement fragments which coat the target cell. The oxidase electron transport chain, located in the plasma membrane, comprises a low potential cytochrome b heterodimer (gp 91‐phox and p22‐phox) associated with FAD. It is non‐functional until at least three proteins, p67‐phox, p47‐phox and p21rac (and (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  45.  26
    The dynamics of cell cycle regulation.John J. Tyson, Attila Csikasz-Nagy & Bela Novak - 2002 - Bioessays 24 (12):1095-1109.
    Major events of the cell cycle—DNA synthesis, mitosis and cell division—are regulated by a complex network of protein interactions that control the activities of cyclin‐dependent kinases. The network can be modeled by a set of nonlinear differential equations and its behavior predicted by numerical simulation. Computer simulations are necessary for detailed quantitative comparisons between theory and experiment, but they give little insight into the qualitative dynamics of the control system and how molecular interactions determine the fundamental physiological properties of cell (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  46.  11
    Membrane ruffling and signal transduction.Anne J. Ridley - 1994 - Bioessays 16 (5):321-327.
    One of the earliest structural changes observed in cells in response to many extracellular factors is membrane ruffling: the formation of motile cell surface protrusions containing a meshwork of newly polymerized actin filaments. It is becoming clear that actin reorganization is an integral part of early signal transduction pathways, and that many signalling molecules interact with the actin cytoskeleton. The small GTP‐binding protein Rac is a key regulator of membrane ruffling, and proteins that can regulate Rac activity, such as Bcr, (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  47.  16
    The genetic analysis of mitosis in Aspergillus nidulans.N. Ronald Morris, John H. Doonan, Stephen A. Osmani & Dorothy B. Engle - 1989 - Bioessays 10 (6):196-201.
    We describe here recent work on the molecular genetics of mitosis in the filamentous fungus Aspergillus nidulans. Aspergillus is one of three simple eukaryotes with powerful genetic systems that have been used to analyze mitosis. The modern molecular biological techniques available with this organism have made it possible to use mutations to identify genes and proteins that play an important role in mitosis. Three Aspergillus genes that affect mitosis are described. One gene, nimA, is specifically expressed late in the cell (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  48.  4
    The roles of autophosphorylation and phosphorylation in the life of osteopontin.Raul A. Saavedra - 1994 - Bioessays 16 (12):913-918.
    Osteopotin is a secreted glycosylated phosphoprotein found in bone and other normal and malignant tissues. Osteopontin can be autophosphorylated on tyrosine residues and can also be phosphorylated on serine and threonine residues by several protein kinases. Autophosphorylation of osteopontin may generate sites for specific interactions with other proteins on the cell surface and/or within the extracelluar matrix. These interactions of osteopontin are thought to be essential for bone mineralization and function. The polyaspartic acid motif of osteopontin, in combination with neighboring (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  49.  21
    Cellular mechanisms of signal transduction for neurotrophins.Alan R. Saltiel & Stuart J. Decker - 1994 - Bioessays 16 (6):405-411.
    The molecular cloning of new neuroactive growth factors and their receptors has greatly enhanced our understanding of important interactions among receptors and singnaling molecules. These studies have begun to illuminate some of the mechanisms that allow for specificity in neuronal signaling. Model cell systems, such as the PC‐12 pheochromocytoma cell line, express receptors for these different neurotirophic factors, leading to comparisons of signaling pathways for these factors. Upon binding their ligands, these receptors undergo phosphorylation on tyrosine residues, which directs their (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  50.  34
    Dissecting the PCP pathway: One or more pathways?Pascal Lapébie, Carole Borchiellini & Evelyn Houliston - 2011 - Bioessays 33 (10):759-768.
    Planar cell polarity (PCP), the alignment of cells within 2D tissue planes, involves a set of core molecular regulators highly conserved between animals and cell types. These include the transmembrane proteins Frizzled (Fz) and VanGogh and the cytoplasmic regulators Dishevelled (Dsh) and Prickle. It is widely accepted that this core forms part of a ‘PCP pathway’ for signal transduction, which can affect cell morphology through activation of an evolutionary ancient regulatory module involving Rho family GTPases and Myosin II, and/or the (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
1 — 50 / 990