Order:
  1.  18
    Close encounters of the third kind: disordered domains and the interactions of proteins.Peter Tompa, Monika Fuxreiter, Christopher J. Oldfield, Istvan Simon, A. Keith Dunker & Vladimir N. Uversky - 2009 - Bioessays 31 (3):328-335.
    Protein–protein interactions are thought to be mediated by domains, which are autonomous folding units of proteins. Recently, a second type of interaction has been suggested, mediated by short segments termed linear motifs, which are related to recognition elements of intrinsically disordered regions. Here, we propose a third kind of protein–protein recognition mechanism, mediated by disordered regions longer than 20–30 residues. Bioinformatics predictions and well‐characterized examples, such as the kinase‐inhibitory domain of Cdk inhibitors and the Wiskott–Aldrich syndrome protein (WASP)‐homology domain 2 (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  2.  49
    Close encounters of the third kind: disordered domains and the interactions of proteins.Peter Tompa, Monika Fuxreiter, Christopher J. Oldfield, Istvan Simon, A. Keith Dunker & Vladimir N. Uversky - 2009 - Bioessays 31 (3):328-335.
    Protein–protein interactions are thought to be mediated by domains, which are autonomous folding units of proteins. Recently, a second type of interaction has been suggested, mediated by short segments termed linear motifs, which are related to recognition elements of intrinsically disordered regions. Here, we propose a third kind of protein–protein recognition mechanism, mediated by disordered regions longer than 20–30 residues. Bioinformatics predictions and well‐characterized examples, such as the kinase‐inhibitory domain of Cdk inhibitors and the Wiskott–Aldrich syndrome protein (WASP)‐homology domain 2 (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  3.  17
    Intrinsically unstructured proteins evolve by repeat expansion.Peter Tompa - 2003 - Bioessays 25 (9):847-855.
    The proportion of the genome encoding intrinsically unstructured proteins increases with the complexity of organisms, which demands specific mechanism(s) for generating novel genetic material of this sort. Here it is suggested that one such mechanism is the expansion of internal repeat regions, i.e., coding micro‐ and minisatellites. An analysis of 126 known unstructured sequences shows the preponderance of repeats: the percentage of proteins with tandemly repeated short segments is much higher in this class (39%) than earlier reported for all Swiss‐Prot (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  4.  11
    The calpain‐system of Drosophila melanogaster: coming of age.Peter Friedrich, Peter Tompa & Attila Farkas - 2004 - Bioessays 26 (10):1088-1096.
    Drosophila melanogaster is one of the most popular and powerful model organisms that helpour understanding of mammalian (human) life processes at the molecular level. Calpains are Ca2+‐activated cytoplasmic proteases thought to play multiple roles in intracellular signal processing by limited proteolysis of target substrate proteins, thereby changing their function. The calpain superfamily consists of 14 genes in mammals, but only 4 genes in Drosophila. One may assume that the calpain system, i.e. recognizing calpain‐dependent life processes and identifying the substrates cleaved (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark