Results for ' sequences of DNA encoding transfer RNAs and ribosomal RNAs as genes'

999 found
Order:
  1.  84
    Selection does not operate primarily on genes.Richard M. Burian - 2010 - In Francisco José Ayala & Robert Arp (eds.), Contemporary debates in philosophy of biology. Malden, MA: Wiley-Blackwell. pp. 141–164.
    This chapter offers a review of standard views about the requirements for natural selection to shape evolution and for the sorts of ‘units’ on which selection might operate. It then summarizes traditional arguments for genic selectionism, i.e., the view that selection operates primarily on genes (e.g., those of G. C. Williams, Richard Dawkins, and David Hull) and traditional counterarguments (e.g., those of William Wimsatt, Richard Lewontin, and Elliott Sober, and a diffuse group based on life history strategies). It then (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  2.  6
    The selfish environment meets the selfish gene: Coevolution and inheritance of RNA and DNA pools.Anthony P. Monaco - 2022 - Bioessays 44 (2):2100239.
    Throughout evolution, there has been interaction and exchange between RNA pools in the environment, and DNA and RNA pools of eukaryotic organisms. Metagenomic and metatranscriptomic sequencing of invertebrate hosts and their microbiota has revealed a rich evolutionary history of RNA virus shuttling between species. Horizontal transfer adapted the RNA pool for successful future interactions which lead to zoonotic transmission and detrimental RNA viral pandemics like SARS‐CoV2. In eukaryotes, noncoding RNA (ncRNA) is an established mechanism derived from prokaryotes to defend (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  3.  39
    An RNA Phage Lab: MS2 in Walter Fiers’ Laboratory of Molecular Biology in Ghent, from Genetic Code to Gene and Genome, 1963–1976. [REVIEW]Jérôme Pierrel - 2012 - Journal of the History of Biology 45 (1):109 - 138.
    The importance of viruses as model organisms is well-established in molecular biology and Max Delbrück's phage group set standards in the DNA phage field. In this paper, I argue that RNA phages, discovered in the 1960s, were also instrumental in the making of molecular biology. As part of experimental systems, RNA phages stood for messenger RNA (mRNA), genes and genome. RNA was thought to mediate information transfers between DNA and proteins. Furthermore, RNA was more manageable at the bench than (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  4.  10
    An RNA Phage Lab: MS2 in Walter Fiers’ Laboratory of Molecular Biology in Ghent, from Genetic Code to Gene and Genome, 1963–1976. [REVIEW]Jérôme Pierrel - 2012 - Journal of the History of Biology 45 (1):109-138.
    The importance of viruses as model organisms is well-established in molecular biology and Max Delbrück’s phage group set standards in the DNA phage field. In this paper, I argue that RNA phages, discovered in the 1960s, were also instrumental in the making of molecular biology. As part of experimental systems, RNA phages stood for messenger RNA, genes and genome. RNA was thought to mediate information transfers between DNA and proteins. Furthermore, RNA was more manageable at the bench than DNA (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  5.  16
    Applications of Cas9 as an RNA‐programmed RNA‐binding protein.David A. Nelles, Mark Y. Fang, Stefan Aigner & Gene W. Yeo - 2015 - Bioessays 37 (7):732-739.
    The Streptococcus pyogenes CRISPR‐Cas system has gained widespread application as a genome editing and gene regulation tool as simultaneous cellular delivery of the Cas9 protein and guide RNAs enables recognition of specific DNA sequences. The recent discovery that Cas9 can also bind and cleave RNA in an RNA‐programmable manner indicates the potential utility of this system as a universal nucleic acid‐recognition technology. RNA‐targeted Cas9 (RCas9) could allow identification and manipulation of RNA substrates in live cells, empowering the study (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark  
  6.  88
    From DNA- to NA-centrism and the conditions for gene-centrism revisited.Alexis De Tiège, Koen Tanghe, Johan Braeckman & Yves Van de Peer - 2014 - Biology and Philosophy 29 (1):55-69.
    First the ‘Weismann barrier’ and later on Francis Crick’s ‘central dogma’ of molecular biology nourished the gene-centric paradigm of life, i.e., the conception of the gene/genome as a ‘central source’ from which hereditary specificity unidirectionally flows or radiates into cellular biochemistry and development. Today, due to advances in molecular genetics and epigenetics, such as the discovery of complex post-genomic and epigenetic processes in which genes are causally integrated, many theorists argue that a gene-centric conception of the organism has become (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  7.  14
    RNA as a catalyst: Natural and designed ribozymes.Uwe Von Ahsen & Renée Schroeder - 1993 - Bioessays 15 (5):299-307.
    RNA can catalyse chemical reactions through its ability to fold into complex three‐dimensional structures and to specifically bind small molecules and divalent metal ions. The 2′‐hydroxyl groups of the ribose moieties contribute to this exceptional reactivity of RNA, compared to DNA. RNA is not only able to catalyse phosphate ester transfer reactions in ribonucleic acids, but can also show aminoacyl esterase activity, and is probably able to promote peptide bond formation. Bearing its potential for functioning both as a genome (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  8.  28
    Control of developmental timing by small temporal RNAs: a paradigm for RNA‐mediated regulation of gene expression.Diya Banerjee & Frank Slack - 2002 - Bioessays 24 (2):119-129.
    Heterochronic genes control the timing of developmental programs. In C. elegans, two key genes in the heterochronic pathway, lin-4 and let-7, encode small temporally expressed RNAs (stRNAs) that are not translated into protein. These stRNAs exert negative post-transcriptional regulation by binding to complementary sequences in the 3′ untranslated regions of their target genes. stRNAs are transcribed as longer precursor RNAs that are processed by the RNase Dicer/DCR-1 and members of the RDE-1/AGO1 family of proteins, (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  9.  4
    Spacers and processing of large ribosomal RNAs in Escherichia coli and mouse cells.D. Schlessinger, R. I. Bolla, R. Sirdeshmukh & J. R. Thomas - 1985 - Bioessays 3 (1):14-18.
    The formation of mature large rRNAs from larger primary transcripts is very different in bacterial and mammalian cells. In both, cotranscription can help to assure the coordinated production of various rRNA species. However, in bacteria, processing is ordered, initiated by cleavages at double‐stranded stems which enclose the mature sequences; several cleavages are required to produce each mature terminus; and the final steps occur in polysomes, apparently linked to continued protein synthesis. In mouse cells, in contrast, cleavages generate nearly all (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  10.  7
    Small mitochondrial RNAs as mediators of nuclear gene regulation, and potential implications for human health.Andrea Pozzi & Damian K. Dowling - 2021 - Bioessays 43 (6):2000265.
    Much research has focused on the effects of pathogenic mitochondrial mutations on health. Notwithstanding, the mechanisms regulating the link between these mutations and their effects remain elusive in several cases. Here, we propose that certain mitochondrial mutations may disrupt function of a set of mitochondrial‐transcribed small RNAs, perturbing communication between mitochondria and nucleus, leading to disease. Our hypothesis synthesises two lines of supporting evidence. First, several mitochondrial mutations cannot be directly linked to effects on energy production or protein synthesis. (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  11. Genome Informatics: The Role of DNA in Cellular Computations.James A. Shapiro - 2006 - Biological Theory 1 (3):288-301.
    Cells are cognitive entities possessing great computational power. DNA serves as a multivalent information storage medium for these computations at various time scales. Information is stored in sequences, epigenetic modifications, and rapidly changing nucleoprotein complexes. Because DNA must operate through complexes formed with other molecules in the cell, genome functions are inherently interactive and involve two-way communication with various cellular compartments. Both coding sequences and repetitive sequences contribute to the hierarchical systemic organization of the genome. By virtue (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   7 citations  
  12.  37
    Sequencing of rhesus macaque Y chromosome clarifies origins and evolution of the DAZ_( _Deleted in AZoospermia) genes.Jennifer F. Hughes, Helen Skaletsky & David C. Page - 2012 - Bioessays 34 (12):1035-1044.
    Studies of Y chromosome evolution often emphasize gene loss, but this loss has been counterbalanced by addition of new genes. The DAZ genes, which are critical to human spermatogenesis, were acquired by the Y chromosome in the ancestor of Old World monkeys and apes. We and our colleagues recently sequenced the rhesus macaque Y chromosome, and comparison of this sequence to human and chimpanzee enables us to reconstruct much of the evolutionary history of DAZ. We report that DAZ (...)
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark  
  13.  35
    Identifying (non‐)coding RNAs and small peptides: Challenges and opportunities.Andrea Pauli, Eivind Valen & Alexander F. Schier - 2015 - Bioessays 37 (1):103-112.
    Over the past decade, high‐throughput studies have identified many novel transcripts. While their existence is undisputed, their coding potential and functionality have remained controversial. Recent computational approaches guided by ribosome profiling have indicated that translation is far more pervasive than anticipated and takes place on many transcripts previously assumed to be non‐coding. Some of these newly discovered translated transcripts encode short, functional proteins that had been missed in prior screens. Other transcripts are translated, but it might be the process of (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark  
  14.  6
    Nucleic acids movement and its relation to genome dynamics of repetitive DNA.Eduard Kejnovsky & Pavel Jedlicka - 2022 - Bioessays 44 (4):2100242.
    There is growing evidence of evolutionary genome plasticity. The evolution of repetitive DNA elements, the major components of most eukaryotic genomes, involves the amplification of various classes of mobile genetic elements, the expansion of satellite DNA, the transfer of fragments or entire organellar genomes and may have connections with viruses. In addition to various repetitive DNA elements, a plethora of large and small RNAs migrate within and between cells during individual development as well as during evolution and contribute (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  15.  14
    The Genomic Code: A Pervasive Encoding/Molding of Chromatin Structures and a Solution of the “Non‐Coding DNA” Mystery.Giorgio Bernardi - 2019 - Bioessays 41 (12):1900106.
    Recent investigations have revealed 1) that the isochores of the human genome group into two super‐families characterized by two different long‐range 3D structures, and 2) that these structures, essentially based on the distribution and topology of short sequences, mold primary chromatin domains (and define nucleosome binding). More specifically, GC‐poor, gene‐poor isochores are low‐heterogeneity sequences with oligo‐A spikes that mold the lamina‐associated domains (LADs), whereas GC‐rich, gene‐rich isochores are characterized by single or multiple GC peaks that mold the topologically (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  16.  42
    Graphical Representation and Similarity Analysis of DNA Sequences Based on Trigonometric Functions.Guo-Sen Xie, Xiao-Bo Jin, Chunlei Yang, Jiexin Pu & Zhongxi Mo - 2018 - Acta Biotheoretica 66 (2):113-133.
    In this paper, we propose two four-base related 2D curves of DNA primary sequences and their corresponding single-base related 2D curves. The constructions of these graphical curves are based on the assignments of individual base to four different sinusoidal functions; then by connecting all these points on these four sinusoidal functions, we can get the F-B curves; similarly, by connecting the points on each of the four sinusoidal functions, we get the single-base related 2D curves. The proposed 2D curves (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  17.  55
    Non‐coding RNAs: Meet thy masters.Fabrício F. Costa - 2010 - Bioessays 32 (7):599-608.
    New DNA sequencing technologies have provided novel insights into eukaryotic genomes, epigenomes, and the transcriptome, including the identification of new non‐coding RNA (ncRNA) classes such as promoter‐associated RNAs and long RNAs. Moreover, it is now clear that up to 90% of eukaryotic genomes are transcribed, generating an extraordinary range of RNAs with no coding capacity. Taken together, these new discoveries are modifying the status quo in genomic science by demonstrating that the eukaryotic gene pool is divided into (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  18.  34
    Functional characterization of three single-nucleotide polymorphisms present in the human APOE promoter sequence: Differential effects in neuronal cells and on DNA-protein interactions.B. Maloney, Y. W. Ge, R. C. Petersen, J. Hardy, J. T. Rogers, J. Perez-Tur & D. K. Lahiri - 2010 - Am J Med Genet B Neuropsychiatr Genet 153:185-201.
    Variations in levels of apolipoprotein E have been tied to the risk and progression of Alzheimer's disease . Our group has previously compared and contrasted the promoters of the mouse and human ApoE gene promoter sequences and found notable similarities and significant differences that suggest the importance of the APOE promoter's role in the human disease. We examine here three specific single-nucleotide polymorphisms within the human APOE promoter region, specifically at -491 , -427 , and at -219 upstream from (...)
    No categories
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  19.  7
    Cutting, splicing, reordering, and elimination of DNA sequences in hypotrichous ciliates.David M. Prescott - 1992 - Bioessays 14 (5):317-324.
    Hypotrichous ciliates extensively process genomic DNA during their life cycle. Processing occurs after cell mating, beginning with multiple rounds of DNA replication to form polytene chromosomes. Thousands of transposonlike elements are then excised from the chromosomes and destroyed, and thousands of short, internal eliminated sequences (IESs) are excised from coding and noncoding parts of genes and destroyed. IES removal from a gene is accompanied by splicing of the remaining chromosomal DNA segments to form a transcriptionally competent gene. For (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  20.  14
    MOTS‐c: A Mitochondrial‐Encoded Regulator of the Nucleus.Bérénice A. Benayoun & Changhan Lee - 2019 - Bioessays 41 (9):1900046.
    Mitochondria are increasingly being recognized as information hubs that sense cellular changes and transmit messages to other cellular components, such as the nucleus, the endoplasmic reticulum (ER), the Golgi apparatus, and lysosomes. Nonetheless, the interaction between mitochondria and the nucleus is of special interest because they both host part of the cellular genome. Thus, the communication between genome‐bearing organelles would likely include gene expression regulation. Multiple nuclear‐encoded proteins have been known to regulate mitochondrial gene expression. On the contrary, no mitochondrial‐encoded (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  21.  47
    Dual Function of DNA Sequences: Protein-Coding Sequences Function as Transcriptional Enhancers.Naama Hirsch & Ramon Y. Birnbaum - 2015 - Perspectives in Biology and Medicine 58 (2):182-195.
    The human genome consists of more than 3 billion base pairs built from four different nucleotides that hold the genetic information for the entire organism. The genome is commonly divided into coding and noncoding DNA sequences, with coding DNA sequences defined as those that can be transcribed into mRNA and translated into proteins, or genes. The genetic code determines the impact of a nucleotide change in a gene on the protein sequence and function, and it is essential (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark  
  22.  80
    The Referential Convergence of Gene Concepts Based on Classical and Molecular Analyses.Tudor M. Baetu - 2010 - International Studies in the Philosophy of Science 24 (4):411-427.
    Kenneth Waters and Marcel Weber argue that the joint use of distinct gene concepts and the transfer of knowledge between classical and molecular analyses in contemporary scientific practice is possible because classical and molecular concepts of the gene refer to overlapping chromosomal segments and the DNA sequences associated with these segments. However, while pointing in the direction of coreference, both authors also agree that there is a considerable divergence between the actual sequences that count as genes (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   6 citations  
  23.  69
    “Molecular gene”: Interpretation in the Right Context. [REVIEW]Degeng Wang - 2005 - Biology and Philosophy 20 (2-3):453-464.
    How to interpret the “molecular gene” concept is discussed in this paper. I argue that the architecture of biological systems is hierarchical and multi-layered, exhibiting striking similarities to that of modern computers. Multiple layers exist between the genotype and system level property, the phenotype. This architectural complexity gives rise to the intrinsic complexity of the genotype-phenotype relationships. The notion of a gene being for a phenotypic trait or traits lacks adequate consideration of this complexity and has limitations in explaining the (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  24.  15
    Processing of snoRNAs as a new source of regulatory non‐coding RNAs.Marina Falaleeva & Stefan Stamm - 2013 - Bioessays 35 (1):46-54.
    Recent experimental evidence suggests that most of the genome is transcribed into non‐coding RNAs. The initial transcripts undergo further processing generating shorter, metabolically stable RNAs with diverse functions. Small nucleolar RNAs (snoRNAs) are non‐coding RNAs that modify rRNAs, tRNAs, and snRNAs that were considered stable. We review evidence that snoRNAs undergo further processing. High‐throughput sequencing and RNase protection experiments showed widespread expression of snoRNA fragments, known as snoRNA‐derived RNAs (sdRNAs). Some sdRNAs resemble miRNAs, these can (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   4 citations  
  25.  15
    DNA triple‐helix formation: An approach to artificial gene repressors?L. James Maher - 1992 - Bioessays 14 (12):807-815.
    Certain sequences of double‐helical DNA can be recognized and tightly bound by oligonucleotides. The effects of such triple‐helical structures on DNA binding proteins have been studied. Stabilities of DNA triple‐helices at or near physiological conditions are sufficient to inhibit DNA binding proteins directed to overlapping sites. Such proteins include restriction endonucleases, methylases, transcription factors, and RNA polymerases. These and Other results suggest that oligonucleotide‐directed triple‐helix formation could provide the basis for designing artificial gene repressors. The general question of whether (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  26.  20
    The origin of DNA:RNA hybridization.Dario Giacomoni - 1993 - Journal of the History of Biology 26 (1):89-107.
    Besides its use in basic research, the DNA:RNA hybridization technique has helped the development of genetic engineering: it is instrumental in the isolation of specific genes that can be inserted into foreign cells, thus modifying their genetic information. Plants, animals, and microorganisms can now be altered to yield improved crops, pest-resistant plants, and a cheaper source of important proteins or drugs. The social relevance of genetic engineering received official sanction in 1980 when the U.S. Supreme Court ruled that genetically (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   7 citations  
  27.  9
    Yeast as a model system for understanding the control of DNA replication in eukaryotes.Rachel Bartlett & Paul Nurse - 1990 - Bioessays 12 (10):457-463.
    In the yeasts Saccharomyces cerevisiae and Schizosaccharomyces pombe, the initiation of DNA replication is controlled at a point called START. At this point, the cellular environment is assessed; only if conditions are appropriate do cells traverse START, thus becoming committed to initiate DNA replication and complete the remainder of the cell cycle. The cdc2+ / CDC28+ gene, encoding the protein kinase p34, is a key element in this complex control. The identification of structural and functional homologues of p34 suggests (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  28.  10
    Do repeated arrays of regulatory small‐RNA genes elicit genomic imprinting?Stéphane Labialle & Jérôme Cavaillé - 2011 - Bioessays 33 (8):565-573.
    The basic premise of the host‐defense theory is that genomic imprinting, the parent‐of‐origin expression of a subset of mammalian genes, derives from mechanisms originally dedicated to silencing repeated and retroviral‐like sequences that deeply colonized mammalian genomes. We propose that large clusters of tandemly‐repeated C/D‐box small nucleolar RNAs (snoRNAs) or microRNAs represent a novel category of sequences recognized as “genomic parasites”, contributing to the emergence of genomic imprinting in a subset of chromosomal regions that contain them. Such (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  29.  45
    The Use of Genetic Testing Information in the Insurance Industry: An Ethical and Societal Analysis of Public Policy Options.Paul Thistle, Gene Laczniak & Alexander Nill - 2019 - Journal of Business Ethics 156 (1):105-121.
    Informed by a search of the literature about the usage of genetic testing information (GTI) by insurance companies, this paper presents a practical ethical analysis of several distinct public policy options that might be used to govern or constrain GTI usage by insurance providers. As medical research advances and the extension to the Human Genome Project (2016, https://en.wikipedia.org/wiki/human_genome_project_-_write) moves to its fullness over the next decade, such research efforts will allow the full synthesis of human DNA to be connected to (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   8 citations  
  30. With ‘Genes’ Like That, Who Needs an Environment? Postgenomics’s Argument for the ‘Ontogeny of Information’.Karola Stotz - 2006 - Philosophy of Science 73 (5):905-917.
    The linear sequence specification of a gene product is not provided by the target DNA sequence alone but by the mechanisms of gene expressions. The main actors of these mechanisms, proteins and functional RNAs, relay environmental information to the genome with important consequences to sequence selection and processing. This `postgenomic' reality has implications for our understandings of development not as predetermined by genes but as an epigenetic process. Critics of genetic determinism have long argued that the activity of (...)
    Direct download (11 more)  
     
    Export citation  
     
    Bookmark   34 citations  
  31.  1
    Does a Ribosome Really Read? On the Cognitive Roots and Heuristic Value of Linguistic Metaphors in Molecular Genetics. Part 2.Сурен Тигранович Золян - 2020 - Russian Journal of Philosophical Sciences 63 (2):46-62.
    We discuss the role of linguistic metaphors as a cognitive frame for the understanding of genetic information processing. The essential similarity between language and genetic information processing has been recognized since the very beginning, and many prominent scholars have noted the possibility of considering genes and genomes as texts or languages. Most of the core terms in molecular biology are based on linguistic metaphors. The processing of genetic information is understood as some operations on text – writing, reading and (...)
    No categories
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  32.  9
    Discovering DNA Methylation, the History and Future of the Writing on DNA.Joshua D. Tompkins - 2022 - Journal of the History of Biology 55 (4):865-887.
    DNA methylation is a quintessential epigenetic mechanism. Widely considered a stable regulator of gene silencing, it represents a form of “molecular braille,” chemically printed on DNA to regulate its structure and the expression of genetic information. However, there was a time when methyl groups simply existed in cells, mysteriously speckled across the cytosine building blocks of DNA. Why was the code of life chemically modified, apparently by “no accident of enzyme action” (Wyatt 1951 )? If all cells in a body (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  33.  27
    Epigenetics and the brain: Transcriptome sequencing reveals new depths to genomic imprinting.Gavin Kelsey - 2011 - Bioessays 33 (5):362-367.
    Transcriptome sequencing has identified more than a thousand potentially imprinted genes in the mouse brain. This comes as a revelation to someone who cut his teeth on the identification of imprinted genes when only a handful was known. Genomic imprinting, an epigenetic mechanism that determines expression of alleles according to sex of transmitting parent, was discovered over 25 years ago in mice but remains an enigmatic phenomenon. Why do these genes disobey the normal Mendelian logic of inheritance, (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  34.  5
    A Kuhnian revolution in molecular biology: Most genes in complex organisms express regulatory RNAs.John S. Mattick - 2023 - Bioessays 45 (9):2300080.
    Thomas Kuhn described the progress of science as comprising occasional paradigm shifts separated by interludes of ‘normal science’. The paradigm that has held sway since the inception of molecular biology is that genes (mainly) encode proteins. In parallel, theoreticians posited that mutation is random, inferred that most of the genome in complex organisms is non‐functional, and asserted that somatic information is not communicated to the germline. However, many anomalies appeared, particularly in plants and animals: the strange genetic phenomena of (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  35.  68
    Back to Chromatin: ENCODE and the Dynamic Epigenome.Ehud Lamm & Sophie Juliane Veigl - 2022 - Biological Theory 17 (4):235-242.
    The “Encyclopedia of DNA Elements” (ENCODE) project was launched by the US National Human Genome Research Institute in the aftermath of the Human Genome Project (HGP). It aimed to systematically map the human transcriptome, and held the promise that identifying potential regulatory regions and transcription factor binding sites would help address some of the perplexing results of the HGP. Its initial results published in 2012 produced a flurry of high-impact publications as well as criticisms. Here we put the results of (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  36.  2
    Does a Ribosome Really Read? On the Cognitive Roots and Heuristic Value of Linguistic Metaphors in Molecular Genetics. Part 2.Сурен Тигранович Золян - 2020 - Russian Journal of Philosophical Sciences 63 (2):46-62.
    We discuss the role of linguistic metaphors as a cognitive frame for the understanding of genetic information processing. The essential similarity between language and genetic information processing has been recognized since the very beginning, and many prominent scholars have noted the possibility of considering genes and genomes as texts or languages. Most of the core terms in molecular biology are based on linguistic metaphors. The processing of genetic information is understood as some operations on text – writing, reading and (...)
    No categories
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  37.  5
    The Science of Genes.David Koepsell & Vanessa Gonzalez - 2015-03-19 - In Michael Boylan (ed.), Who Owns You? Wiley. pp. 30–51.
    The universally recognized backbone of molecular biology describes the flow of genetic information from deoxyribonucleic acid (DNA) to ribonucleic acid (RNA) to protein or gene product, that is, DNA is transcribed into another nucleic acid (RNA), which is single stranded, next some types of RNA are in turn translated into proteins. Translation of nucleic acids to proteins is literally a translation from the genomic language to the metabolic language. Codons formed of a sequence of three nucleic acids summon a specific (...)
    No categories
    Direct download  
     
    Export citation  
     
    Bookmark  
  38.  30
    Sperm‐mediated gene transfer: Applications and implications.Kevin Smith & Corrado Spadafora - 2005 - Bioessays 27 (5):551-562.
    Recent developments in studies of sperm‐mediated gene transfer (SMGT) now provide solid ground for the notion that sperm cells can act as vectors for exogenous genetic sequences. A substantive body of evidence indicates that SMGT is potentially useable in animal transgenesis, but also suggests that the final fate of the exogenous sequences transferred by sperm is not always predictable. The analysis of SMGT‐derived offspring has shown the existence of integrated foreign sequences in some cases, while in (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  39.  12
    Latest Advances for the Sleeping Beauty Transposon System: 23 Years of Insomnia but Prettier than Ever.Maximilian Amberger & Zoltán Ivics - 2020 - Bioessays 42 (11):2000136.
    The Sleeping Beauty transposon system is a nonviral DNA transfer tool capable of efficiently mediating transposition‐based, stable integration of DNA sequences of choice into eukaryotic genomes. Continuous refinements of the system, including the emergence of hyperactive transposase mutants and novel approaches in vectorology, greatly improve upon transposition efficiency rivaling viral‐vector‐based methods for stable gene insertion. Current developments, such as reversible transgenesis and proof‐of‐concept RNA‐guided transposition, further expand on possible applications in the future. In addition, innate advantages such as (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  40.  8
    Does a Ribosome Really Read? On the Cognitive Roots and Heuristic Value of Linguistic Metaphors in Molecular Genetics Part 2.Suren T. Zolyan - 2020 - Russian Journal of Philosophical Sciences 63 (2):46-62.
    We discuss the role of linguistic metaphors as a cognitive frame for the understanding of genetic information processing. The essential similarity between language and genetic information processing has been recognized since the very beginning, and many prominent scholars have noted the possibility of considering genes and genomes as texts or languages. Most of the core terms in molecular biology are based on linguistic metaphors. The processing of genetic information is understood as some operations on text – writing, reading and (...)
    No categories
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  41.  6
    Does a Ribosome Really Read? On the Cognitive Roots and Heuristic Value of Linguistic Metaphors in Molecular Genetics. Part 1.Suren T. Zolyan - 2020 - Russian Journal of Philosophical Sciences 63 (1):101-115.
    We discuss the role of linguistic metaphors as a cognitive frame for the understanding of genetic information processing. The essential similarity between language and genetic information processing has been recognized since the very beginning, and many prominent scholars have noted the possibility of considering genes and genomes as texts or languages. Most of the core terms in molecular biology are based on linguistic metaphors. The processing of genetic information is understood as some operations on text – writing, reading and (...)
    No categories
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  42.  12
    AUG as the Translation Start Codon in Circular RNA Molecules: A Connection between Protein‐Coding Genes and Transfer RNAs?Paweł Mackiewicz - 2020 - Bioessays 42 (6):2000061.
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  43.  23
    Horizontal transfer of short and degraded DNA has evolutionary implications for microbes and eukaryotic sexual reproduction.Søren Overballe-Petersen & Eske Willerslev - 2014 - Bioessays 36 (10):1005-1010.
    Horizontal gene transfer in the form of long DNA fragments has changed our view of bacterial evolution. Recently, we discovered that such processes may also occur with the massive amounts of short and damaged DNA in the environment, and even with truly ancient DNA. Although it presently remains unclear how often it takes place in nature, horizontal gene transfer of short and damaged DNA opens up the possibility for genetic exchange across distinct species in both time and space. (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark  
  44.  32
    How Acts of Infidelity Promote DNA Break Repair: Collision and Collusion Between DNA Repair and Transcription.Priya Sivaramakrishnan, Alasdair J. E. Gordon, Jennifer A. Halliday & Christophe Herman - 2018 - Bioessays 40 (10):1800045.
    Transcription is a fundamental cellular process and the first step in gene regulation. Although RNA polymerase (RNAP) is highly processive, in growing cells the progression of transcription can be hindered by obstacles on the DNA template, such as damaged DNA. The authors recent findings highlight a trade‐off between transcription fidelity and DNA break repair. While a lot of work has focused on the interaction between transcription and nucleotide excision repair, less is known about how transcription influences the repair of DNA (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  45.  13
    Good things in small packages: The tiny genomes of chlorarachniophyte endosymbionts.Paul R. Gilson & Geoffrey I. McFadden - 1997 - Bioessays 19 (2):167-173.
    Chlorarachniophytes are amoeboflagellate, marine protists that have acquired photosynthetic capacity by engulfing and retaining a green alga. These green algal endosymbionts are severely reduced, retaining only the chloroplast, nucleus, cytoplasm and plasma membrane. The vestigial nucleus of the endosymbiont, called the nucleomorph, contains only three small linear chromosomes and has a haploid genome size of just 380 kb ‐ the smallest eukaryotic genome known. Initial characterisation of nucleomorph DNA has revealed that all chromosomes are capped with inverted repeats comprising a (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  46.  30
    Expression of human plasma protein genes in ageing transgenic mice.Barbara H. Bowman, Funmei Yang & Gwendolyn S. Adrian - 1990 - Bioessays 12 (7):317-322.
    Introduction of human plasma protein genes into the mouse genome to produce transgenic mice furnishes an in vivo model for correlating chromosomal DNA sequences with developmental and tissue‐specific expression. The liver produces an array of plasma proteins that circulate throughout the body contributing to homeostasis. Non‐hepatic tissue sites of synthesis have been identified where a local provision of plasma proteins in needed. Analysis of expression of human plasma protein genes in ageing transgenic mice appears especialy promising in (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  47.  8
    Microbial systems engineering: First successes and the way ahead.Sven Dietz & Sven Panke - 2010 - Bioessays 32 (4):356-362.
    The first promising results from “streamlined,” minimal genomes tend to support the notion that these are a useful tool in biological systems engineering. However, compared with the speed with which genomic microbial sequencing has provided us with a wealth of data to study biological functions, it is a slow process. So far only a few projects have emerged whose synthetic ambition even remotely matches our analytic capabilities. Here, we survey current technologies converging into a future ability to engineer large‐scale biological (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  48.  71
    The relationship between non‐protein‐coding DNA and eukaryotic complexity.Ryan J. Taft, Michael Pheasant & John S. Mattick - 2007 - Bioessays 29 (3):288-299.
    There are two intriguing paradoxes in molecular biology-the inconsistent relationship between organismal complexity and (1) cellular DNA content and (2) the number of protein-coding genes-referred to as the C-value and G-value paradoxes, respectively. The C-value paradox may be largely explained by varying ploidy. The G-value paradox is more problematic, as the extent of protein coding sequence remains relatively static over a wide range of developmental complexity. We show by analysis of sequenced genomes that the relative amount of non-protein-coding sequence (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   10 citations  
  49.  4
    Disruption of regulatory domains and novel transcripts as disease‐causing mechanisms.Lila Allou & Stefan Mundlos - 2023 - Bioessays 45 (10):2300010.
    Deletions, duplications, insertions, inversions, and translocations, collectively called structural variations (SVs), affect more base pairs of the genome than any other sequence variant. The recent technological advancements in genome sequencing have enabled the discovery of tens of thousands of SVs per human genome. These SVs primarily affect non‐coding DNA sequences, but the difficulties in interpreting their impact limit our understanding of human disease etiology. The functional annotation of non‐coding DNA sequences and methodologies to characterize their three‐dimensional (3D) organization (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  50.  39
    Evolution of the gelsolin family of actin-binding proteins as novel transcriptional coactivators.Stuart K. Archer, Charles Claudianos & Hugh D. Campbell - 2005 - Bioessays 27 (4):388-396.
    The gelsolin gene family encodes a number of higher eukaryotic actin-binding proteins that are thought to function in the cytoplasm by severing, capping, nucleating or bundling actin filaments. Recent evidence, however, suggests that several members of the gelsolin family may have adopted unexpected nuclear functions including a role in regulating transcription. In particular, flightless I, supervillin and gelsolin itself have roles as coactivators for nuclear receptors, despite the fact that their divergence appears to predate the evolutionary appearance of nuclear receptors. (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
1 — 50 / 999