Results for 'ubiquitin ligases'

81 found
Order:
  1.  25
    ERAD ubiquitin ligases.Martin Mehnert, Thomas Sommer & Ernst Jarosch - 2010 - Bioessays 32 (10):905-913.
    In eukaryotic cells terminally misfolded proteins of the secretory pathway are retarded in the endoplasmic reticulum (ER) and subsequently degraded in a ubiquitin‐proteasome‐dependent manner. This highly conserved process termed ER‐associated protein degradation (ERAD) ensures homeostasis in the secretory pathway by disposing faulty polypeptides and preventing their deleterious accumulation and eventual aggregation in the cell. The focus of this paper is the functional description of membrane‐bound ubiquitin ligases, which are involved in all critical steps of ERAD. In the (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  2.  10
    As a matter of fat: Emerging roles of lipid‐sensitive E3 ubiquitin ligases.Christian M. Gawden-Bone, Paul J. Lehner & Norbert Volkmar - 2023 - Bioessays 45 (12):2300139.
    The dynamic structure and composition of lipid membranes need to be tightly regulated to control the vast array of cellular processes from cell and organelle morphology to protein‐protein interactions and signal transduction pathways. To maintain membrane integrity, sense‐and‐response systems monitor and adjust membrane lipid composition to the ever‐changing cellular environment, but only a relatively small number of control systems have been described. Here, we explore the emerging role of the ubiquitin‐proteasome system in monitoring and maintaining membrane lipid composition. We (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  3.  14
    Cell Polarity and Notch Signaling: Linked by the E3 Ubiquitin Ligase Neuralized?Gantas Perez-Mockus & Francois Schweisguth - 2017 - Bioessays 39 (11):1700128.
    Notch is a mechanosensitive receptor that requires direct cell–cell contact for its activation. Both the strength and the range of notch signaling depend on the size and geometry of the contact sites between cells. These properties of cell–cell contacts in turn depend on cell shape and polarity. At the molecular level, the E3 ubiquitin ligase Neuralized links receptor activation with epithelial cell remodeling. Neur regulates the endocytosis of the Notch ligand Delta, hence Notch activation. It also targets the apical (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  4.  20
    Cell Polarity and Notch Signaling: Linked by the E3 Ubiquitin Ligase Neuralized?Gantas Perez-Mockus & Francois Schweisguth - 2017 - Bioessays 39 (11):1700128.
    Notch is a mechanosensitive receptor that requires direct cell–cell contact for its activation. Both the strength and the range of notch signaling depend on the size and geometry of the contact sites between cells. These properties of cell–cell contacts in turn depend on cell shape and polarity. At the molecular level, the E3 ubiquitin ligase Neuralized links receptor activation with epithelial cell remodeling. Neur regulates the endocytosis of the Notch ligand Delta, hence Notch activation. It also targets the apical (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  5.  27
    Integrin control of cell cycle: a new role for ubiquitin ligase.Qing Qiu Pu & Charles H. Streuli - 2002 - Bioessays 24 (1):17-21.
    Receptor tyrosine kinases and integrins are activated by growth factors and extracellular matrix, respectively. Their activation leads to signal transduction cascades that control many aspects of cell phenotype, including progression through the G1 phase of the cell cycle. However, the signalling cassettes driven by growth factors and matrix do not work independently of each other. Integrin triggering is essential to facilitate kinase‐ and GTPase‐mediated signals and thereby drive efficient transfer of information through the growth factor–cyclin axis. A recent study indicates (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  6.  21
    TRIM/RBCC, a novel class of ‘single protein RING finger’ E3 ubiquitin ligases.Germana Meroni & Graciana Diez-Roux - 2005 - Bioessays 27 (11):1147-1157.
    The TRIM/RBCC proteins are defined by the presence of the tripartite motif composed of a RING domain, one or two B‐box motifs and a coiled‐coil region. These proteins are involved in a plethora of cellular processes such as apoptosis, cell cycle regulation and viral response. Consistently, their alteration results in many diverse pathological conditions. The highly conserved modular structure of these proteins suggests that a common biochemical function may underlie their assorted cellular roles. Here, we review recent data indicating that (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  7.  23
    How ubiquitination regulates the TGF‐β signalling pathway: New insights and new players.Surinder M. Soond & Andrew Chantry - 2011 - Bioessays 33 (10):749-758.
    Ubiquitination of protein species in regulating signal transduction pathways is universally accepted as of fundamental importance for normal development, and defects in this process have been implicated in the progression of many human diseases. One pathway that has received much attention in this context is transforming growth factor‐beta (TGF‐β) signalling, particularly during the regulation of epithelial‐mesenchymal transition (EMT) and tumour progression. While E3‐ubiquitin ligases offer themselves as potential therapeutic targets, much remains to be unveiled regarding mechanisms that culminate (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  8.  9
    Ubiquitin Dynamics in Stem Cell Biology: Current Challenges and Perspectives.Maud Dieuleveult & Benoit Miotto - 2020 - Bioessays 42 (3):1900129.
    Ubiquitination plays a central role in the regulation of stem cell self‐renewal, propagation, and differentiation. In this review, the functions of ubiquitin dynamics in a myriad of cellular processes, acting along side the pluripotency network, to regulate embryonic stem cell identity are highlighted. The implication of deubiquitinases (DUBs) and E3 Ubiquitin (Ub) ligases in cellular functions beyond protein degradation is reported, including key functions in the regulation of mRNA stability, protein translation, and intra‐cellular trafficking; and how it (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  9.  14
    KCTD10 Biology: An Adaptor for the Ubiquitin E3 Complex Meets Multiple Substrates.Masashi Maekawa & Shigeki Higashiyama - 2020 - Bioessays 42 (8):1900256.
    Protein ubiquitination constitutes a post‐translational modification mediated by ubiquitin ligases whereby ubiquitinated substrates are degraded through the proteasomal or lysosomal pathways, or acquire novel molecular functions according to their “ubiquitin codes.” Dysfunction of the ubiquitination process in cells causes various diseases such as cancers along with neurodegenerative, auto‐immune/inflammatory, and metabolic diseases. KCTD10 functions as a substrate recognition receptor for cullin‐3 (CUL3), a scaffold protein in RING‐type ubiquitin ligase complexes. Recently, studies by ourselves and others have identified (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  10.  14
    Ubiquitin Signaling Regulates RNA Biogenesis, Processing, and Metabolism.Pankaj Thapa, Nilesh Shanmugam & Wojciech Pokrzywa - 2020 - Bioessays 42 (1):1900171.
    The fate of eukaryotic proteins, from their synthesis to destruction, is supervised by the ubiquitin–proteasome system (UPS). The UPS is the primary pathway responsible for selective proteolysis of intracellular proteins, which is guided by covalent attachment of ubiquitin to target proteins by E1 (activating), E2 (conjugating), and E3 (ligating) enzymes in a process known as ubiquitylation. The UPS can also regulate protein synthesis by influencing multiple steps of RNA (ribonucleic acid) metabolism. Here, recent publications concerning the interplay between (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  11.  14
    Switching DCAFs: Beyond substrate receptors.Sang-Min Jang, Christophe E. Redon & Mirit I. Aladjem - 2021 - Bioessays 43 (7):2100057.
    Deciphering how DCAFs (DDB1‐CUL4 Associated Factors) modulate a broad spectrum of cellular processes, including cell cycle progression and maintenance of genomic integrity is critical to better understand cellular homeostasis and diseases. Cells contain more than 100 DCAFs that associate with the Cullin‐Ring Ubiquitin Ligase 4 (CRL4) complex that target specific protein substrates for degradation. DCAFs are thought to act as substrate receptors that dictate the specificity of the ubiquitination machinery (“catalytic DCAFs”). However, recent studies have suggested that some DCAFs (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  12.  29
    SAPs as novel regulators of abiotic stress response in plants.Jitender Giri, Prasant K. Dansana, Kamakshi S. Kothari, Gunjan Sharma, Shubha Vij & Akhilesh K. Tyagi - 2013 - Bioessays 35 (7):639-648.
    Stress associated proteins (SAPs), novel A20/AN1 zinc‐finger domain‐containing proteins, are fast emerging as potential candidates for biotechnological approaches in order to improve abiotic stress tolerance in plants – the ultimate aim of which is crop‐yield protection. Until relatively recently, such proteins had only been identified in humans, where they had been shown to be key regulators of innate immunity. Their phylogenetic relationship and recruitment of diverse protein domains reflect an architectural and mechanistic diversity. Emerging evidence suggests that SAPs may act (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  13.  46
    PROTACs: An Emerging Targeting Technique for Protein Degradation in Drug Discovery.Shanshan Gu, Danrui Cui, Xiaoyu Chen, Xiufang Xiong & Yongchao Zhao - 2018 - Bioessays 40 (4):1700247.
    Proteolysis-targeting chimeric molecules represent an emerging technique that is receiving much attention for therapeutic intervention. The mechanism is based on the inhibition of protein function by hijacking a ubiquitin E3 ligase for protein degradation. The hetero-bifunctional PROTACs contain a ligand for recruiting an E3 ligase, a linker, and another ligand to bind with the protein targeted for degradation. Thus, PROTACs have profound potential to eliminate “undruggable” protein targets, such as transcription factors and non-enzymatic proteins, which are not limited to (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  14.  14
    RNA Decay Factor UPF1 Promotes Protein Decay: A Hidden Talent.Terra-Dawn M. Plank & Miles F. Wilkinson - 2018 - Bioessays 40 (1):1700170.
    The RNA-binding protein, UPF1, is best known for its central role in the nonsense-mediated RNA decay pathway. Feng et al. now report a new function for UPF1—it is an E3 ubiquitin ligase that specifically promotes the decay of a key pro-muscle transcription factor: MYOD. UPF1 achieves this through its RING-like domain, which confers ubiquitin E3 ligase activity. Feng et al. provide evidence that the ability of UPF1 to destabilize MYOD represses myogenesis. In the future, it will be important (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  15.  17
    RNA Decay Factor UPF1 Promotes Protein Decay: A Hidden Talent.Terra-Dawn M. Plank & Miles F. Wilkinson - 2018 - Bioessays 40 (1):1700170.
    The RNA-binding protein, UPF1, is best known for its central role in the nonsense-mediated RNA decay pathway. Feng et al. now report a new function for UPF1—it is an E3 ubiquitin ligase that specifically promotes the decay of a key pro-muscle transcription factor: MYOD. UPF1 achieves this through its RING-like domain, which confers ubiquitin E3 ligase activity. Feng et al. provide evidence that the ability of UPF1 to destabilize MYOD represses myogenesis. In the future, it will be important (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  16.  4
    Post‐translational Wnt receptor regulation: Is the fog slowly clearing?Tadasuke Tsukiyama, Bon-Kyoung Koo & Shigetsugu Hatakeyama - 2021 - Bioessays 43 (4):2000297.
    Wnt signaling plays pivotal roles during our entire lives, from conception to death, through the regulation of morphogenesis in developing embryos and the maintenance of tissue homeostasis in adults. The regulation of Wnt signaling occurs on several levels: at the receptor level on the plasma membrane, at the β‐catenin protein level in the cytoplasm, and through transcriptional regulation in the nucleus. Several recent studies have focused on the mechanisms of Wnt receptor regulation, following the discovery that the Wnt receptor frizzled (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  17.  13
    On‐site remodeling at chromatin: How multiprotein complexes are rebuilt during DNA repair and transcriptional activation.Thaleia Papadopoulou & Holger Richly - 2016 - Bioessays 38 (11):1130-1140.
    In this review, we discuss a novel on‐site remodeling function that is mediated by the H2A‐ubiquitin binding protein ZRF1. ZRF1 facilitates the remodeling of multiprotein complexes at chromatin and lies at the heart of signaling processes that occur at DNA damage sites and during transcriptional activation. In nucleotide excision repair ZRF1 remodels E3 ubiquitin ligase complexes at the damage site. During embryonic stem cell differentiation, it contributes to retinoic acid‐mediated gene activation by altering the subunit composition of the (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  18.  24
    Making new out of old: Recycling and modification of an ancient protein translocation system during eukaryotic evolution.Kathrin Bolte, Nicole Gruenheit, Gregor Felsner, Maik S. Sommer, Uwe-G. Maier & Franziska Hempel - 2011 - Bioessays 33 (5):368-376.
    At first glance the three eukaryotic protein translocation machineries – the ER‐associated degradation (ERAD) transport apparatus of the endoplasmic reticulum, the peroxisomal importomer and SELMA, the pre‐protein translocator of complex plastids – appear quite different. However, mechanistic comparisons and phylogenetic analyses presented here suggest that all three translocation machineries share a common ancestral origin, which highlights the recycling of pre‐existing components as an effective evolutionary driving force.Editor's suggested further reading in BioEssays ERAD ubiquitin ligases Abstract.
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   3 citations  
  19.  3
    A paREDOX in the control of cholesterol biosynthesis.Nicole M. Fenton, Lydia Qian, Eloise G. Paine, Laura J. Sharpe & Andrew J. Brown - forthcoming - Bioessays.
    Sterols and the reductant nicotinamide adenine dinucleotide phosphate (NADPH), essential for eukaryotic life, arose because of, and as an adaptation to, rising levels of molecular oxygen (O2). Hence, the NADPH and O2‐intensive process of sterol biosynthesis is inextricably linked to redox status. In mammals, cholesterol biosynthesis is exquisitely regulated post‐translationally by multiple E3 ubiquitin ligases, with membrane associated Really Interesting New Gene (RING) C3HC4 finger 6 (MARCHF6) degrading at least six enzymes in the pathway. Intriguingly, all these MARCHF6‐dependent (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  20.  25
    Born to bind: the BTB protein–protein interaction domain.Roberto Perez-Torrado, Daisuke Yamada & Pierre-Antoine Defossez - 2006 - Bioessays 28 (12):1194-1202.
    The BTB domain is a protein–protein interaction motif that is found throughout eukaryotes. It determines a unique tri‐dimensional fold with a large interaction surface. The exposed residues are highly variable and can permit dimerization and oligomerization, as well as interaction with a number of other proteins. BTB‐containing proteins are numerous and control cellular processes that range from actin dynamics to cell‐cycle regulation. Here, we review findings in the field of transcriptional regulation to illustrate how the high variability of the BTB (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  21.  12
    Regulation of functional diversity within the Nedd4 family by accessory and adaptor proteins.Linda Shearwin-Whyatt, Hazel E. Dalton, Natalie Foot & Sharad Kumar - 2006 - Bioessays 28 (6):617-628.
    Ubiquitination is essential in mediating diverse cellular functions including protein degradation and trafficking. Ubiquitin‐protein (E3) ligases determine the substrate specificity of the ubiquitination process. The Nedd4 family of E3 ligases is an evolutionarily conserved family of proteins required for the ubiquitination of a large number of cellular targets. As a result, this family regulates a wide variety of cellular processes including transcription, stability and trafficking of plasma membrane proteins, and the degradation of misfolded proteins. The modular architecture (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  22.  43
    Ubiquitylation Pathways In Insulin Signaling and Organismal Homeostasis.Vishnu Balaji, Wojciech Pokrzywa & Thorsten Hoppe - 2018 - Bioessays 40 (5):1700223.
    The insulin/insulin‐like growth factor‐1 (IGF‐1) signaling (IIS) pathway is a pivotal genetic program regulating cell growth, tissue development, metabolic physiology, and longevity of multicellular organisms. IIS integrates a fine‐tuned cascade of signaling events induced by insulin/IGF‐1, which is precisely controlled by post‐translational modifications. The ubiquitin/proteasome‐system (UPS) influences the functionality of IIS through inducible ubiquitylation pathways that regulate internalization of the insulin/IGF‐1 receptor, the stability of downstream insulin/IGF‐1 signaling targets, and activity of nuclear receptors for control of gene expression. An (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  23.  8
    Proteolysis at work: when time matters for a sensory organelle.Emanuela Senatore & Antonio Feliciello - 2022 - Bioessays 44 (9):2200137.
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  24.  9
    The PINK1 repertoire: Not just a one trick pony.Liam Pollock, Jane Jardine, Sylvie Urbé & Michael J. Clague - 2021 - Bioessays 43 (11):2100168.
    PTEN‐induced kinase 1 (PINK1) is a Parkinson's disease gene that acts as a sensor for mitochondrial damage. Its best understood role involves phosphorylating ubiquitin and the E3 ligase Parkin (PRKN) to trigger a ubiquitylation cascade that results in selective clearance of damaged mitochondria through mitophagy. Here we focus on other physiological roles of PINK1. Some of these also lie upstream of Parkin but others represent autonomous functions, for which alternative substrates have been identified. We argue that PINK1 orchestrates a (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  25.  15
    Ubiquitin in homeostasis, development and disease.Sylviane Muller & Lawrence M. Schwartz - 1995 - Bioessays 17 (8):677-684.
    Ubiquitin is the most phylogenetically conserved protein known. This 8,500 Da polypeptide can be covalently attached to cellular proteins as a posttranslational modification. In most cases, the addition of multiple ubiquitin adducts to a protein targets it for rapid degradation by a multisubunit protease known as the 26S proteasome. While the ubiquitin/26S proteasome pathway is responsible for the degradation of the bulk of cellular proteins during homeostasis, it may also be responsible for the rapid loss of protein (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  26.  25
    Ubiquitin‐Modulated Phase Separation of Shuttle Proteins: Does Condensate Formation Promote Protein Degradation?Thuy P. Dao & Carlos A. Castañeda - 2020 - Bioessays 42 (11):2000036.
    Liquid‐liquid phase separation (LLPS) has recently emerged as a possible mechanism that enables ubiquitin‐binding shuttle proteins to facilitate the degradation of ubiquitinated substrates via distinct protein quality control (PQC) pathways. Shuttle protein LLPS is modulated by multivalent interactions among their various domains as well as heterotypic interactions with polyubiquitin chains. Here, the properties of three different shuttle proteins (hHR23B, p62, and UBQLN2) are closely examined, unifying principles for the molecular determinants of their LLPS are identified, and how LLPS is (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  27.  21
    A SUMO and ubiquitin code coordinates protein traffic at replication factories.Emilio Lecona & Oscar Fernandez-Capetillo - 2016 - Bioessays 38 (12):1209-1217.
    Post‐translational modifications regulate each step of DNA replication to ensure the faithful transmission of genetic information. In this context, we recently showed that deubiquitination of SUMO2/3 and SUMOylated proteins by USP7 helps to create a SUMO‐rich and ubiquitin‐low environment around replisomes that is necessary to maintain the activity of replication forks and for new origin firing. We propose that a two‐flag system mediates the collective concentration of factors at sites of DNA replication, whereby SUMO and Ubiquitinated‐SUMO would constitute “stay” (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  28.  14
    Dysfunction of the ubiquitin–proteasome system in multiple disease conditions: therapeutic approaches.Subhankar Paul - 2008 - Bioessays 30 (11-12):1172-1184.
    The ubiquitin–proteasome system (UPS) is the major proteolytic pathway that degrades intracellular proteins in a regulated manner. Deregulation of the UPS has been implicated in the pathogenesis of many neurodegenerative disorders like Alzheimer's disease, Parkinson's diseases, Huntington disease, Prion‐like lethal disorders, in the pathogenesis of several genetic diseases including cystic fibrosis, Angelman's syndrome and Liddle syndrome and in many cancers. Multiple lines of evidence have already proved that UPS has the potential to be an exciting novel therapeutic target for (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  29.  15
    The role of the ubiquitin proteasome system in synapse remodeling and neurodegenerative diseases.Mei Ding & Kang Shen - 2008 - Bioessays 30 (11-12):1075-1083.
    The ubiquitin proteasome system is a potent regulatory mechanism used to control protein stability in numerous cellular processes, including neural development. Many neurodegenerative diseases are featured by the accumulation of UPS‐associated proteins, suggesting the UPS dysfunction may be crucial for pathogenesis. Recent experiments have highlighted the UPS as a key player during synaptic development. Here we summarize recent discoveries centered on the role of the UPS in synapse remodeling and draw attention to the potential link between the synaptic UPS (...)
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark  
  30.  58
    Histone ubiquitination: a tagging tail unfolds?Laure J. M. Jason, Susan C. Moore, John D. Lewis, George Lindsey & Juan Ausió - 2002 - Bioessays 24 (2):166-174.
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  31.  37
    Ubiquitin‐mediated proteolysis: biological regulation via destruction.Aaron Ciechanover, Amir Orian & Alan L. Schwartz - 2000 - Bioessays 22 (5):442-451.
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  32.  19
    Mammalian DNA ligases.Alan E. Tomkinson & David S. Levin - 1997 - Bioessays 19 (10):893-901.
    DNA joining enzymes play an essential role in the maintenance of genomic integrity and stability. Three mammalian genes encoding DNA ligases, LIG1, LIG3 and LIG4, have been identified. Since DNA ligase II appears to be derived from DNA ligase III by a proteolytic mechanism, the three LIG genes can account for the four biochemically distinct DNA ligase activities, DNA ligases I, II, III and IV, that have been purified from mammalian cell extracts. It is probable that the specific (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  33.  9
    Pollen maturation: Where ubiquitin is not required?Dawn Worrall & David Twell - 1994 - Bioessays 16 (12):873-875.
    A recent paper(1) describing the stage‐specific loss of ubiquitin (UBQ) and ubiquitinated proteins (UBQ‐Ps) during pollen development has raised some interesting questions regarding our understanding of the regulation of protein turnover during cellular differentiation and the specialized development of the pollen grain. The authors, Callis and Bedinger(1), describe experiments in which the profiles of free and protein‐conjugated ubiquitin were examined during pollen development. UBQ and UBQ‐Ps were immunologically detected in extracts of microspores and maturing pollen of maize at (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  34.  6
    Fraternity of old‐timers: How ubiquitin regulates miRNA functions.Sergei Ryazansky & Natalia Akulenko - 2023 - Bioessays 45 (7):2200220.
    AbstractmiRNA‐mediated gene repression and ubiquitin‐dependent processes are among the oldest and most versatile mechanisms that control multiple molecular pathways, rather than just protein turnover. These systems were discovered decades ago and have become among the most studied. All systems within cells are interconnected, and these two are no exception: the plethora of studies have demonstrated that the activity of the miRNAs system depends on players of the ubiquitin‐centered universe of processes, and vice versa. This review focuses on recent (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  35.  64
    Cytosolic N‐Glycans: Triggers for Ubiquitination Directing Proteasomal and Autophagic Degradation.Yukiko Yoshida & Keiji Tanaka - 2018 - Bioessays 40 (3):1700215.
    Proteins on the cell surface and secreted proteins are modified with sugar chains that generate and modulate biological complexity and diversity. Sugar chains not only contribute physically to the conformation and solubility of proteins, but also exert various functions via sugar-binding proteins that reside on the cell surface or in organelles of the secretory pathway. However, some glycosidases and lectins are found in the cytosol or nucleus. Recent studies of cytosolic sugar–related molecules have revealed that sugar chains on proteins in (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  36.  13
    A second chance for protein targeting/folding: Ubiquitination and deubiquitination of nascent proteins.Jacob A. Culver, Xia Li, Matthew Jordan & Malaiyalam Mariappan - 2022 - Bioessays 44 (6):2200014.
    Molecular chaperones in cells constantly monitor and bind to exposed hydrophobicity in newly synthesized proteins and assist them in folding or targeting to cellular membranes for insertion. However, proteins can be misfolded or mistargeted, which often causes hydrophobic amino acids to be exposed to the aqueous cytosol. Again, chaperones recognize exposed hydrophobicity in these proteins to prevent nonspecific interactions and aggregation, which are harmful to cells. The chaperone‐bound misfolded proteins are then decorated with ubiquitin chains denoting them for proteasomal (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  37.  20
    Regulatory cross-talk between lysine acetylation and ubiquitination: role in the control of protein stability.C.�Cile Caron, Cyril Boyault & Saadi Khochbin - 2005 - Bioessays 27 (4):408-415.
    Direct download  
     
    Export citation  
     
    Bookmark   1 citation  
  38.  4
    Functional hierarchy of PCNA‐interacting motifs in DNA processing enzymes.Samir M. Hamdan & Alfredo De Biasio - 2023 - Bioessays 45 (6):2300020.
    Numerous eukaryotic DNA processing enzymes, such as DNA polymerases and ligases, bind the processivity factor PCNA, which acts as a platform to recruit and regulate the binding of enzymes to their DNA substrate. Multiple PCNA‐interacting motifs (PIPs) are present in these enzymes, but their individual structural and functional role has been a matter of debate. Recent cryo‐EM reconstructions of high‐fidelity DNA polymerase Pol δ (Pol δ), translesion synthesis DNA polymerase κ (Pol κ) and Ligase 1 (Lig1) bound to a (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  39.  10
    Proteolytic control in ciliogenesis: Temporal restriction or early initiation?Gregor Habeck & Jörg Schweiggert - 2022 - Bioessays 44 (9):2200087.
    Cellular processes are highly dependent on a dynamic proteome that undergoes structural and functional rearrangements to allow swift conversion between different cellular states. By inducing proteasomal degradation of inhibitory or stimulating factors, ubiquitylation is particularly well suited to trigger such transitions. One prominent example is the remodelling of the centrosome upon cell cycle exit, which is required for the formation of primary cilia – antenna‐like structures on the surface of most cells that act as integrative hubs for various extracellular signals. (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  40.  46
    Question-driven stepwise experimental discoveries in biochemistry: two case studies.Michael Fry - 2022 - History and Philosophy of the Life Sciences 44 (2):1-52.
    Philosophers of science diverge on the question what drives the growth of scientific knowledge. Most of the twentieth century was dominated by the notion that theories propel that growth whereas experiments play secondary roles of operating within the theoretical framework or testing theoretical predictions. New experimentalism, a school of thought pioneered by Ian Hacking in the early 1980s, challenged this view by arguing that theory-free exploratory experimentation may in many cases effectively probe nature and potentially spawn higher evidence-based theories. Because (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  41.  10
    Neddylation‐CRLs regulate the functions of Treg immune cells. Di Wu & Yi Sun - 2023 - Bioessays 45 (4):2200222.
    Neddylation, a ubiquitylation‐like post‐translational modification, is catalyzed by a cascade composed of three enzymes: E1 activating enzyme, E2 conjugating enzyme, and E3 ligase with cullins as physiological substrates. Specifically, neddylation E2 UBE2M couples with E3 RBX1 to neddylate cullins 1–4, whereas neddylation E2 UBE2F couples with E3 RBX2/SAG to neddylate cullin 5, leading to activation of CRL1‐4 (Cullin‐RING ligases 1–4) and CRL5, respectively. While over‐activation of the neddylation‐CRLs axis occurs frequently in many human cancers, how neddylation‐CRLs regulate the function (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  42.  10
    It Takes Two to Tango: Activation of Protein Kinase D by Dimerization.Ronja Reinhardt, Linda Truebestein, Heiko A. Schmidt & Thomas A. Leonard - 2020 - Bioessays 42 (4):1900222.
    The recent discovery and structure determination of a novel ubiquitin‐like dimerization domain in protein kinase D (PKD) has significant implications for its activation. PKD is a serine/threonine kinase activated by the lipid second messenger diacylglycerol (DAG). It is an essential and highly conserved protein that is implicated in plasma membrane directed trafficking processes from the trans‐Golgi network. However, many open questions surround its mechanism of activation, its localization, and its role in the biogenesis of cargo transport carriers. In reviewing (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  43.  14
    Deubiquitinating Enzymes in Model Systems and Therapy: Redundancy and Compensation Have Implications.Sarah Zachariah & Douglas A. Gray - 2019 - Bioessays 41 (11):1900112.
    The multiplicity of deubiquitinating enzymes (DUBs) encoded by vertebrate genomes is partly attributable to whole genome duplication events that occurred early in chordate evolution. By surveying the literature for the largest family of DUBs (the ubiquitin-specific proteases), extensive functional redundancy for duplicated genes has been confirmed as opposed to singletons. Dramatically conflicting results have been reported for loss of function studies conducted through RNA interference as opposed to inactivating mutations, but the contradictory findings can be reconciled by a recently (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  44.  18
    Nucleolar aggresomes as counterparts of cytoplasmic aggresomes in proteotoxic stress.Leena Latonen - 2011 - Bioessays 33 (5):386-395.
    The nucleolus may represent a key stress response organelle in the nucleus following proteotoxic stress by serving as a platform for protein aggregates. Aggregation of proteins often results from insufficient protein degradation by the ubiquitin‐proteasome system (UPS), occurring in inclusion diseases, upon treatment by proteasome inhibitors (PIs) or due to various forms of stress. As the nucleolar inclusions resemble cytoplasmic aggresomes in gathering ubiquitin and numerous UPS components and targets, including cancer‐related transcription factors and cell cycle regulators (e.g. (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  45.  11
    Multifaceted targeted protein degradation systems for different cellular compartments.Cornelia E. Zorca, Armaan Fallahi, Sophie Luo & Mohamed A. Eldeeb - 2022 - Bioessays 44 (6):2200008.
    Selective protein degradation maintains cellular homeostasis, but this process is disrupted in many diseases. Targeted protein degradation (TPD) approaches, built upon existing cellular mechanisms, are promising methods for therapeutically regulating protein levels. Here, we review the diverse palette of tools that are now available for doing so throughout the gene expression pathway and in specific cellular compartments. These include methods for directly removing targeted proteins via the ubiquitin proteasome system with proteolysis targeting chimeras (PROTACs) or dephosphorylation targeting chimeras (DEPTACs). (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  46.  19
    USP7/HAUSP: A SUMO deubiquitinase at the heart of DNA replication.Veronique A. J. Smits & Raimundo Freire - 2016 - Bioessays 38 (9):863-868.
    DNA replication is both highly conserved and controlled. Problematic DNA replication can lead to genomic instability and therefore carcinogenesis. Numerous mechanisms work together to achieve this tight control and increasing evidence suggests that post‐translational modifications (phosphorylation, ubiquitination, SUMOylation) of DNA replication proteins play a pivotal role in this process. Here we discuss such modifications in the light of a recent article that describes a novel role for the deubiquitinase (DUB) USP7/HAUSP in the control of DNA replication. USP7 achieves this function (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  47.  12
    SUMO‐regulated transcription: Challenging the dogma.Pierre Chymkowitch, Aurélie Nguéa P. & Jorrit M. Enserink - 2015 - Bioessays 37 (10):1095-1105.
    The small ubiquitin‐like modifier SUMO regulates many aspects of cellular physiology to maintain cell homeostasis, both under normal conditions and during cell stress. Components of the transcriptional apparatus and chromatin are among the most prominent SUMO substrates. The prevailing view is that SUMO serves to repress transcription. However, as we will discuss in this review, this model needs to be refined, because recent studies have revealed that SUMO can also have profound positive effects on transcription.
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  48.  28
    How does SHIP1/2 balance PtdIns(3,4)P2 and does it signal independently of its phosphatase activity?Jingwei Xie, Christophe Erneux & Isabelle Pirson - 2013 - Bioessays 35 (8):733-743.
    The number of cellular events identified as being directly or indirectly modulated by phosphoinositides dramatically increased in the recent years. Part of the complexity results from the fact that the seven phosphoinositides play second messenger functions in many different areas of growth factors and insulin signaling, cytoskeletal organization, membrane dynamics, trafficking, or nuclear signaling. PtdIns(3,4)P2 is commonly reported as a product of the SH2 domain‐containing inositol 5‐phosphatases 1/2 (SHIP1 and SHIP2) that dephosphorylate PtdIns(3,4,5)P3 at the 5‐position. Here we discuss recent (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  49.  18
    The Wnt Transcriptional Switch: TLE Removal or Inactivation?Aravinda-Bharathi Ramakrishnan, Abhishek Sinha, Vinson B. Fan & Ken M. Cadigan - 2018 - Bioessays 40 (2):1700162.
    Many targets of the Wnt/β-catenin signaling pathway are regulated by TCF transcription factors, which play important roles in animal development, stem cell biology, and oncogenesis. TCFs can regulate Wnt targets through a “transcriptional switch,” repressing gene expression in unstimulated cells and promoting transcription upon Wnt signaling. However, it is not clear whether this switch mechanism is a general feature of Wnt gene regulation or limited to a subset of Wnt targets. Co-repressors of the TLE family are known to contribute to (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  50.  18
    Reversible histone modification and the chromosome cell cycle.E. Morton Bradbury - 1992 - Bioessays 14 (1):9-16.
    During the eukaryotic cell cycle, chromosomes undergo large structural transitions and spatial rearrangements that are associated with the major cell functions of genome replication, transcription and chromosome condensation to metaphase chromosomes. Eukaryotic cells have evolved cell cycle dependent processes that modulate histone:DNA interactions in chromosomes. These are; (i) acetylations of lysines; (ii) phosphorylations of serines and threonines and (iii) ubiquitinations of lysines. All of these reversible modifications are contained in the well‐defined very basic N‐ and C‐ terminal domains of histones. (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   3 citations  
1 — 50 / 81