Results for 'open quantum systems'

987 found
Order:
  1.  8
    Quantum foundations and open quantum systems: lecture notes of the Advanced School.Theo M. Nieuwenhuizen (ed.) - 2015 - [Hackensack,] New Jersey: World Scientific.
    The Advanced School on Quantum Foundations and Open Quantum Systems was an exceptional combination of lectures. These comprise lectures in standard physics and investigations on the foundations of quantum physics. On the one hand it included lectures on quantum information, quantum open systems, quantum transport and quantum solid state. On the other hand it included lectures on quantum measurement, models for elementary particles, sub-quantum structures and aspects on (...)
    No categories
    Direct download  
     
    Export citation  
     
    Bookmark  
  2.  4
    Bohmian Mechanics, Open Quantum Systems and Continuous Measurements.Antonio B. Nassar - 2017 - Cham: Imprint: Springer. Edited by Salvador Miret-Artés.
    This book shows how Bohmian mechanics overcomes the need for a measurement postulate involving wave function collapse. The measuring process plays a very important role in quantum mechanics. It has been widely analyzed within the Copenhagen approach through the Born and von Neumann postulates, with later extension due to Lüders. In contrast, much less effort has been invested in the measurement theory within the Bohmian mechanics framework. The continuous measurement (sharp and fuzzy, or strong and weak) problem is considered (...)
    No categories
    Direct download  
     
    Export citation  
     
    Bookmark  
  3.  82
    Atoms in molecules as non-overlapping, bounded, space-filling open quantum systems.Richard F. W. Bader & Chérif F. Matta - 2012 - Foundations of Chemistry 15 (3):253-276.
    The quantum theory of atoms in molecules (QTAIM) uses physics to define an atom and its contribution to observable properties in a given system. It does so using the electron density and its flow in a magnetic field, the current density. These are the two fields that Schrödinger said should be used to explain and understand the properties of matter. It is the purpose of this paper to show how QTAIM bridges the conceptual gulf that separates the observations of (...)
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark   11 citations  
  4.  79
    Chaos in a model of an open quantum system.Frederick M. Kronz - 2000 - Philosophy of Science 67 (3):453.
    In a previous essay I argued that quantum chaos cannot be exhibited in models of quantum systems within von Neumann's mathematical framework for quantum mechanics, and that it can be exhibited in models within Dirac's formal framework. In this essay, the negative thesis concerning von Neumann's framework is elaborated further by extending it to the case of Hamiltonian operators having a continuous spectrum. The positive thesis concerning Dirac's formal framework is also elaborated further by constructing a (...)
    Direct download (8 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  5.  22
    Entanglement generation and evolution in open quantum systems.Aurelian Isar - 2009 - In Krzysztof Stefanski (ed.), Open Systems and Information Dynamics. World scientific publishing company. pp. 16--02.
  6.  21
    Book Review: The Theory of Open Quantum Systems. By H.-P. Breuer and F. Petruccione. Oxford University Press, New York, New York, 2002, xxi+625 pp., $55.00 (hardcover). ISBN 0-19-852063-8. [REVIEW]Bassano Vacchini - 2004 - Foundations of Physics 34 (1):183-186.
    No categories
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  7.  43
    Book Review: The Theory of Open Quantum Systems. By H.-P. Breuer and F. Petruccione. Oxford University Press, New York, New York, 2002, xxi+625 pp., $55.00 (hardcover). ISBN 0-19-852063-8. [REVIEW]Bassano Vacchini - 2004 - Foundations of Physics 34 (1):183-186.
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  8.  46
    Fluctuations in the dynamics of single quantum systems.Anton Amann & Harald Atmanspacher - 1998 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 29 (2):151-182.
    The traditional formalism of quantum mechanics is mainly used to describe ensembles of identical systems (with a density-operator formalism) or single isolated systems, but is not capable of describing single open quantum objects with many degrees of freedom showing pure-state stochastic dynamical behaviour. In particular, stochastic 'line-migration' as in single-molecule spectroscopy of defect molecules in a molecular matrix is not adequately described. Starting with the Bohr scenario of stochastic quantum jumps (between strict energy eigenstates), (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   3 citations  
  9. Entanglement and Open Systems in Algebraic Quantum Field Theory.Rob Clifton & Hans Halvorson - 2001 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 32 (1):1-31.
    Entanglement has long been the subject of discussion by philosophers of quantum theory, and has recently come to play an essential role for physicists in their development of quantum information theory. In this paper we show how the formalism of algebraic quantum field theory (AQFT) provides a rigorous framework within which to analyse entanglement in the context of a fully relativistic formulation of quantum theory. What emerges from the analysis are new practical and theoretical limitations on (...)
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark   45 citations  
  10. The Open Systems View.Michael E. Cuffaro & Stephan Hartmann - manuscript
    There is a deeply entrenched view in philosophy and physics, the closed systems view, according to which isolated systems are conceived of as fundamental. On this view, when a system is under the influence of its environment this is described in terms of a coupling between it and a separate system which taken together are isolated. We argue against this view, and in favor of the alternative open systems view, for which systems interacting with their (...)
    Direct download (6 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  11. Open Problems in Relational Quantum Mechanics.Federico Laudisa - 2019 - Journal for General Philosophy of Science / Zeitschrift für Allgemeine Wissenschaftstheorie 50 (2):215-230.
    The Rovelli relational interpretation of quantum mechanics is based on the assumption that the notion of observer-independent state of a physical system is to be rejected. In RQM the primary target of the theory is the analysis of the whole network of relations that may be established among quantum subsystems, and the shift to a relational perspective is supposed to address in a satisfactory way the general problem of the interpretation of quantum mechanics. Here I discuss two (...)
    No categories
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   15 citations  
  12. Active Fault‐Tolerant Quantum Error Correction: The Curse of the Open System.Amit Hagar - 2009 - Philosophy of Science 76 (4):506-535.
    Relying on the universality of quantum mechanics and on recent results known as the “threshold theorems,” quantum information scientists deem the question of the feasibility of large‐scale, fault‐tolerant, and computationally superior quantum computers as purely technological. Reconstructing this question in statistical mechanical terms, this article suggests otherwise by questioning the physical significance of the threshold theorems. The skepticism it advances is neither too strong (hence is consistent with the universality of quantum mechanics) nor too weak (hence (...)
    Direct download (6 more)  
     
    Export citation  
     
    Bookmark   3 citations  
  13.  35
    Identities for Entropy Change Associated with the Time-Evolution of an Open System.Hiroki Majima & Akira Suzuki - 2015 - Foundations of Physics 45 (8):914-922.
    A general relation between entropy and an evolutionary superoperator is derived based on the theory of the real-time formulation. The formulation establishing the relation relies only on the framework of quantum statistical mechanics and the standard definition of the von Neumann entropy. Applying the theory of the imaginary-time formulation, a similar relation is obtained for the entropy change due to the change in reservoir temperatures. To show the usefulness of these formulas, we derived the expression for the entropy production (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark  
  14. The Open Systems View and the Everett Interpretation.Michael E. Cuffaro & Stephan Hartmann - 2023 - Quantum Reports 5 (2):418-425.
    It is argued that those who defend the Everett, or ‘many-worlds’, interpretation of quantum mechanics should embrace what we call the general quantum theory of open systems (GT) as the proper framework in which to conduct foundational and philosophical investigations in quantum physics. GT is a wider dynamical framework than its alternative, standard quantum theory (ST). This is true even though GT makes no modifications to the quantum formalism. GT rather takes a different (...)
    Direct download  
     
    Export citation  
     
    Bookmark  
  15. Entanglement and open systems in algebraic quantum field theory.with Hans Halvorson - 2004 - In Jeremy Butterfield & Hans Halvorson (eds.), Quantum Entanglements: Selected Papers. New York: Clarendon Press.
     
    Export citation  
     
    Bookmark  
  16.  30
    Open Problems in the Development of a Quantum Mereology.Federico Holik & Juan Pablo Jorge - 2023 - In Jonas R. B. Arenhart & Raoni W. Arroyo (eds.), Non-Reflexive Logics, Non-Individuals, and the Philosophy of Quantum Mechanics: Essays in Honour of the Philosophy of Décio Krause. Springer Verlag. pp. 157-176.
    Mereology deals with the study of the relations between wholes and parts. In this work we will discuss different developments and open problems related to the formulation of a quantum mereology. In particular, we will discuss different advances in the development of formal systems aimed to describe the whole-parts relationship in the context of quantum theory.
    Direct download  
     
    Export citation  
     
    Bookmark  
  17.  81
    Quantum Information Biology: From Information Interpretation of Quantum Mechanics to Applications in Molecular Biology and Cognitive Psychology.Masanari Asano, Irina Basieva, Andrei Khrennikov, Masanori Ohya, Yoshiharu Tanaka & Ichiro Yamato - 2015 - Foundations of Physics 45 (10):1362-1378.
    We discuss foundational issues of quantum information biology —one of the most successful applications of the quantum formalism outside of physics. QIB provides a multi-scale model of information processing in bio-systems: from proteins and cells to cognitive and social systems. This theory has to be sharply distinguished from “traditional quantum biophysics”. The latter is about quantum bio-physical processes, e.g., in cells or brains. QIB models the dynamics of information states of bio-systems. We argue (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  18.  17
    Open Systems’ Density Matrix Properties in a Time Coarsened Formalism.Robert Englman & Asher Yahalom - 2015 - Foundations of Physics 45 (6):673-690.
    The concept of time-coarsened density matrix for open systems has frequently featured in equilibrium and non-equilibrium statistical mechanics, without being probed as to the detailed consequences of the time averaging procedure. In this work we introduce and prove the need for a selective and non-uniform time-sampling, whose form depends on the properties of the bath. It is also applicable when an open microscopic sub-system is coupled to another finite system. By use of a time-periodic minimal coupling model (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark  
  19. DAVIES, E. B. Quantum Theory of Open Systems[REVIEW]E. Beltrametti - 1978 - Scientia 72 (13):29.
    No categories
     
    Export citation  
     
    Bookmark  
  20.  5
    Fundamental weight systems are quantum states.David Corfield, Hisham Sati & Urs Schreiber - unknown
    Weight systems on chord diagrams play a central role in knot theory and Chern-Simons theory; and more recently in stringy quantum gravity. We highlight that the noncommutative algebra of horizontal chord diagrams is canonically a star-algebra, and ask which weight systems are positive with respect to this structure; hence we ask: Which weight systems are quantum states, if horizontal chord diagrams are quantum observables? We observe that the fundamental gl(n)-weight systems on horizontal chord (...)
    Direct download  
     
    Export citation  
     
    Bookmark  
  21. Initial Conditions and the 'Open Systems' Argument against Laws of Nature.Clint Ballinger - 2008 - Metaphysica 9 (1):17-31.
    This article attacks “open systems” arguments that because constant conjunctions are not generally observed in the real world of open systems we should be highly skeptical that universal laws exist. This work differs from other critiques of open system arguments against laws of nature by not focusing on laws themselves, but rather on the inference from open systems. We argue that open system arguments fail for two related reasons; 1) because they cannot (...)
    Direct download (7 more)  
     
    Export citation  
     
    Bookmark   3 citations  
  22. Quantum Causal Modelling.Fabio Costa & Sally Shrapnel - 2016 - New Journal of Physics 18 (6):063032.
    Causal modelling provides a powerful set of tools for identifying causal structure from observed correlations. It is well known that such techniques fail for quantum systems, unless one introduces 'spooky' hidden mechanisms. Whether one can produce a genuinely quantum framework in order to discover causal structure remains an open question. Here we introduce a new framework for quantum causal modelling that allows for the discovery of causal structure. We define quantum analogues for core features (...)
     
    Export citation  
     
    Bookmark   15 citations  
  23.  4
    The Quantum Labyrinth.Dick J. Hoekzema - 1993 - Dordrecht, Netherland: Springer.
    "This volume deals with the question whether quantum mechanics can provide a picture of physical reality. The question is investigated from physical, philosophical, and logical perspectives on the basis of modern views on measurement and open quantum systems"--Back cover.
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  24.  36
    Quantum Theory: a Foundational Approach.Charis Anastopoulos - 2023 - Cambridge: Cambridge University Press.
    This is a textbook on quantum mechanics. It is addressed to graduates and advanced undergraduates. The book presents quantum theory as a logically coherent system, placing stronger emphasis on the theory' s probabilistic structure and on the role of symmetries. It makes students aware of foundational problems from the very beginning, but at the same time, it urges them to adopt a pragmatic attitude towards the quantum formalism. The book consists of five parts. Part I is a (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  25. A general conceptual framework for decoherence in closed and open systems.Mario Castagnino, Roberto Laura & Olimpia Lombardi - 2007 - Philosophy of Science 74 (5):968-980.
    In this paper we argue that the formalisms for decoherence originally devised to deal just with closed or open systems can be subsumed under a general conceptual framework, in such a way that they cooperate in the understanding of the same physical phenomenon. This new perspective dissolves certain conceptual difficulties of the einselection program but, at the same time, shows that the openness of the quantum system is not the essential ingredient for decoherence. †To contact the authors, (...)
    Direct download (10 more)  
     
    Export citation  
     
    Bookmark   11 citations  
  26. Quantum computing.Amit Hagar & Michael Cuffaro - 2019 - Stanford Encyclopedia of Philosophy.
    Combining physics, mathematics and computer science, quantum computing and its sister discipline of quantum information have developed in the past few decades from visionary ideas to two of the most fascinating areas of quantum theory. General interest and excitement in quantum computing was initially triggered by Peter Shor (1994) who showed how a quantum algorithm could exponentially “speed-up” classical computation and factor large numbers into primes far more efficiently than any (known) classical algorithm. Shor’s algorithm (...)
    Direct download  
     
    Export citation  
     
    Bookmark   6 citations  
  27.  73
    Quantum theory at the crossroads: reconsidering the 1927 Solvay conference.Guido Bacciagaluppi - 2007 - New York: Cambridge University Press. Edited by Antony Valentini.
    The 1927 Solvay conference was perhaps the most important meeting in the history of quantum theory. Contrary to popular belief, the interpretation of quantum theory was not settled at this conference, and no consensus was reached. Instead, a range of sharply conflicting views were presented and extensively discussed, including de Broglie's pilot-wave theory, Born and Heisenberg's quantum mechanics, and Schrödinger's wave mechanics. Today, there is no longer an established or dominant interpretation of quantum theory, so it (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   77 citations  
  28. Characterizing quantum theory in terms of information-theoretic constraints.Rob Clifton, Jeffrey Bub & Hans Halvorson - 2002 - Foundations of Physics 33 (11):1561-1591.
    We show that three fundamental information-theoretic constraints -- the impossibility of superluminal information transfer between two physical systems by performing measurements on one of them, the impossibility of broadcasting the information contained in an unknown physical state, and the impossibility of unconditionally secure bit commitment -- suffice to entail that the observables and state space of a physical theory are quantum-mechanical. We demonstrate the converse derivation in part, and consider the implications of alternative answers to a remaining (...) question about nonlocality and bit commitment. (shrink)
    Direct download (10 more)  
     
    Export citation  
     
    Bookmark   111 citations  
  29. Quantum metaphysical indeterminacy.Claudio Calosi & Jessica Wilson - 2019 - Philosophical Studies 176 (10):2599–2627.
    On many currently live interpretations, quantum mechanics violates the classical supposition of value definiteness, according to which the properties of a given particle or system have precise values at all times. Here we consider whether either metaphysical supervaluationist or determinable-based approaches to metaphysical indeterminacy can accommodate quantum metaphysical indeterminacy (QMI). We start by discussing the standard theoretical indicator of QMI, and distinguishing three seemingly different sources of QMI (S1). We then show that previous arguments for the conclusion that (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   46 citations  
  30. On the Debate Concerning the Proper Characterization of Quantum Dynamical Evolution.Michael E. Cuffaro & Wayne C. Myrvold - 2013 - Philosophy of Science 80 (5):1125-1136.
    There has been a long-standing and sometimes passionate debate between physicists over whether a dynamical framework for quantum systems should incorporate not completely positive (NCP) maps in addition to completely positive (CP) maps. Despite the reasonableness of the arguments for complete positivity, we argue that NCP maps should be allowed, with a qualification: these should be understood, not as reflecting ‘not completely positive’ evolution, but as linear extensions, to a system’s entire state space, of CP maps that are (...)
    Direct download (12 more)  
     
    Export citation  
     
    Bookmark   3 citations  
  31. Recommended questions on the road towards a scientific explanation of the periodic system of chemical elements with the help of the concepts of quantum physics.W. H. Eugen Schwarz - 2006 - Foundations of Chemistry 9 (2):139-188.
    Periodic tables (PTs) are the ‘ultimate paper tools’ of general and inorganic chemistry. There are three fields of open questions concerning the relation between PTs and physics: (i) the relation between the chemical facts and the concept of a periodic system (PS) of chemical elements (CEs) as represented by PTs; (ii) the internal structure of the PS; (iii)␣The relation between the PS and atomistic quantum chemistry. The main open questions refer to (i). The fuzziness of the concepts (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   8 citations  
  32.  11
    The Measurement Problem is a Feature, Not a Bug – Schematising the Observer and the Concept of an Open System on an Informational, or (neo-)Bohrian, Approach.Michael E. Cuffaro - 2023 - Entropy 25:1410.
    I flesh out the sense in which the informational approach to interpreting quantum mechanics, as defended by Pitowsky and Bub and lately by a number of other authors, is (neo-)Bohrian. I argue that on this approach, quantum mechanics represents what Bohr called a “natural generalisation of the ordinary causal description” in the sense that the idea (which philosophers of science like Stein have argued for on the grounds of practical and epistemic necessity) that understanding a theory as a (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  33. Nonseparability and quantum chaos.Frederick M. Kronz - 1998 - Philosophy of Science 65 (1):50-75.
    Conventional wisdom has it that chaotic behavior is either strongly suppressed or absent in quantum models. Indeed, some researchers have concluded that these considerations serve to undermine the correspondence principle, thereby raising serious doubts about the adequacy of quantum mechanics. Thus, the quantum chaos question is a prime subject for philosophical analysis. The most significant reasons given for the absence or suppression of chaotic behavior in quantum models are the linearity of Schrödinger’s equation and the unitarity (...)
    Direct download (9 more)  
     
    Export citation  
     
    Bookmark   7 citations  
  34.  8
    Quantum Gravity.Claus Kiefer - 2004 - Oxford University Press UK.
    The search for a quantum theory of the gravitational field is one of the great open problems in theoretical physics. This book presents a self-contained discussion of the concepts, methods and applications that can be expected in such a theory. The two main approaches to its construction - the direct quantisation of Einstein's general theory of relativity and string theory - are covered. Whereas the first attempts to construct a viable theory for the gravitational field alone, string theory (...)
    Direct download  
     
    Export citation  
     
    Bookmark   42 citations  
  35.  71
    Quantum Mechanics, Spacetime Locality, and Gravity.Yasunori Nomura - 2013 - Foundations of Physics 43 (8):978-1007.
    Quantum mechanics introduces the concept of probability at the fundamental level, yielding the measurement problem. On the other hand, recent progress in cosmology has led to the “multiverse” picture, in which our observed universe is only one of the many, bringing an apparent arbitrariness in defining probabilities, called the measure problem. In this paper, we discuss how these two problems are related with each other, developing a picture for quantum measurement and cosmological histories in the quantum mechanical (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  36. A Synopsis of the Minimal Modal Interpretation of Quantum Theory.Jacob Barandes & David Kagan - manuscript
    We summarize a new realist, unextravagant interpretation of quantum theory that builds on the existing physical structure of the theory and allows experiments to have definite outcomes but leaves the theory's basic dynamical content essentially intact. Much as classical systems have specific states that evolve along definite trajectories through configuration spaces, the traditional formulation of quantum theory permits assuming that closed quantum systems have specific states that evolve unitarily along definite trajectories through Hilbert spaces, and (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  37. The Minimal Modal Interpretation of Quantum Theory.Jacob Barandes & David Kagan - manuscript
    We introduce a realist, unextravagant interpretation of quantum theory that builds on the existing physical structure of the theory and allows experiments to have definite outcomes but leaves the theory’s basic dynamical content essentially intact. Much as classical systems have specific states that evolve along definite trajectories through configuration spaces, the traditional formulation of quantum theory permits assuming that closed quantum systems have specific states that evolve unitarily along definite trajectories through Hilbert spaces, and our (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  38.  62
    Quantum Information Versus Epistemic Logic: An Analysis of the Frauchiger–Renner Theorem.Florian J. Boge - 2019 - Foundations of Physics 49 (10):1143-1165.
    A recent no-go theorem (Frauchiger and Renner in Nat Commun 9(1):3711, 2018) establishes a contradiction from a specific application of quantum theory to a multi- agent setting. The proof of this theorem relies heavily on notions such as ‘knows’ or ‘is certain that’. This has stimulated an analysis of the theorem by Nurgalieva and del Rio (in: Selinger P, Chiribella G (eds) Proceedings of the 15th international conference on quantum physics and logic (QPL 2018). EPTCS 287, Open (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   4 citations  
  39.  29
    The Quantum Field Theory (QFT) Dual Paradigm in Fundamental Physics and the Semantic Information Content and Measure in Cognitive Sciences.Gianfranco Basti - 2017 - In Gordana Dodig-Crnkovic & Raffaela Giovagnoli (eds.), Representation of Reality: Humans, Other Living Organism and Intelligent Machines. Heidelberg: Springer.
    In this paper we explore the possibility of giving a justification of the “semantic information” content and measure, in the framework of the recent coalgebraic approach to quantum systems and quantum computation, extended to QFT systems. In QFT, indeed, any quantum system has to be considered as an “open” system, because it is always interacting with the background fluctuations of the quantum vacuum. Namely, the Hamiltonian in QFT always includes the quantum system (...)
    Direct download  
     
    Export citation  
     
    Bookmark  
  40.  71
    The Quantum Measurement Problem and Cluster Separability.P. Hájíček - 2011 - Foundations of Physics 41 (4):640-666.
    A modified Beltrametti-Cassinelli-Lahti model of the measurement apparatus that satisfies both the probability reproducibility condition and the objectification requirement is constructed. Only measurements on microsystems are considered. The cluster separability forms a basis for the first working hypothesis: the current version of quantum mechanics leaves open what happens to systems when they change their separation status. New rules that close this gap can therefore be added without disturbing the logic of quantum mechanics. The second working hypothesis (...)
    Direct download (6 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  41. Quantum decoherence and the approach to equilibrium.Meir Hemmo & Orly Shenker - 2003 - Philosophy of Science 70 (2):330-358.
    We discuss a recent proposal by Albert (1994a; 1994b; 2000, ch. 7) to recover thermodynamics on a purely dynamical basis, using the quantum theory of the collapse of the wave function by Ghirardi, Rimini, and Weber (1986). We propose an alternative way to explain thermodynamics within no-collapse interpretations of quantum mechanics. Our approach relies on the standard quantum mechanical models of environmental decoherence of open systems (e.g., Joos and Zeh 1985; Zurek and Paz 1994). This (...)
    Direct download (14 more)  
     
    Export citation  
     
    Bookmark   13 citations  
  42. Experimental metaphysics2: The double standard in the quantum-information approach to the foundations of quantum theory.Amit Hagar - 2007 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 38 (4):906-919.
    Among the alternatives of non-relativistic quantum mechanics (NRQM) there are those that give different predictions than quantum mechanics in yet-untested circumstances, while remaining compatible with current empirical findings. In order to test these predictions, one must isolate one’s system from environmental induced decoherence, which, on the standard view of NRQM, is the dynamical mechanism that is responsible for the ‘apparent’ collapse in open quantum systems. But while recent advances in condensed-matter physics may lead in the (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   4 citations  
  43.  50
    Quantum Non-Gravity and Stellar Collapse.C. Barceló, L. J. Garay & G. Jannes - 2011 - Foundations of Physics 41 (9):1532-1541.
    Observational indications combined with analyses of analogue and emergent gravity in condensed matter systems support the possibility that there might be two distinct energy scales related to quantum gravity: the scale that sets the onset of quantum gravitational effects $E_{\rm B}$ (related to the Planck scale) and the much higher scale $E_{\rm L}$ signalling the breaking of Lorentz symmetry. We suggest a natural interpretation for these two scales: $E_{\rm L}$ is the energy scale below which a special (...)
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  44.  3
    Twenty-First Century Quantum Mechanics: Hilbert Space to Quantum Computers: Mathematical Methods and Conceptual Foundations.Guido Fano - 2017 - Cham: Imprint: Springer. Edited by S. M. Blinder.
    This book is designed to make accessible to nonspecialists the still evolving concepts of quantum mechanics and the terminology in which these are expressed. The opening chapters summarize elementary concepts of twentieth century quantum mechanics and describe the mathematical methods employed in the field, with clear explanation of, for example, Hilbert space, complex variables, complex vector spaces and Dirac notation, and the Heisenberg uncertainty principle. After detailed discussion of the Schrödinger equation, subsequent chapters focus on isotropic vectors, used (...)
    No categories
    Direct download  
     
    Export citation  
     
    Bookmark  
  45.  52
    Quantum decoherence and the approach to equilibrium.Meir Hemmo & Orly Shenker - 2005 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 36 (4):626-648.
    We discuss a recent proposal by Albert to recover thermodynamics on a purely dynamical basis, using the quantum theory of the collapse of the wave function of Ghirardi, Rimini and Weber. We propose an alternative way to explain thermodynamics within no-collapse interpretations of quantum mechanics. Our approach relies on the standard quantum mechanical models of environmental decoherence of open systems, \eg Joos and Zeh and Zurek and Paz. This paper presents the two approaches and discusses (...)
    Direct download (7 more)  
     
    Export citation  
     
    Bookmark   8 citations  
  46.  22
    Quantum mechanics based on position.Ralph H. Young - 1980 - Foundations of Physics 10 (1-2):33-56.
    The only observational quantity which quantum mechanics needs to address islocation. The typical primitive observation on a microsystem (e.g., photon) isdetection at alocation (e.g., by a photomultiplier “looking at” a grating). To analyze an experiment, (a) form a conceptual ensemble of replicas of it, (b) assign a wave function (in “position representation”) to its initial condition, (c) evolve the wave function by the Schrödinger equation (known, once and for all, as a function of the system's composition), (d) compute the (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  47.  8
    Foundations of Quantum Theory: From Classical Concepts to Operator Algebras.Klaas Landsman - 2017 - Cham: Imprint: Springer.
    This book studies the foundations of quantum theory through its relationship to classical physics. This idea goes back to the Copenhagen Interpretation (in the original version due to Bohr and Heisenberg), which the author relates to the mathematical formalism of operator algebras originally created by von Neumann. The book therefore includes comprehensive appendices on functional analysis and C*-algebras, as well as a briefer one on logic, category theory, and topos theory. Matters of foundational as well as mathematical interest that (...)
    No categories
    Direct download  
     
    Export citation  
     
    Bookmark   10 citations  
  48.  40
    Mathematical foundations of quantum theory.A. R. Marlow (ed.) - 1978 - New York: Academic Press.
    Mathematical Foundations of Quantum Theory is a collection of papers presented at the 1977 conference on the Mathematical Foundations of Quantum Theory, held in New Orleans. The contributors present their topics from a wide variety of backgrounds and specialization, but all shared a common interest in answering quantum issues. Organized into 20 chapters, this book's opening chapters establish a sound mathematical basis for quantum theory and a mode of observation in the double slit experiment. This book (...)
    Direct download  
     
    Export citation  
     
    Bookmark   4 citations  
  49.  35
    The Open Past in an Indeterministic Physics.Nicolas Gisin & Flavio Del Santo - 2022 - Foundations of Physics 53 (1):1-11.
    Discussions on indeterminism in physics focus on the possibility of an open future, i.e. the possibility of having potential alternative future events, the realisation of one of which is not fully determined by the present state of affairs. Yet, can indeterminism affect also the past, making it open as well? We show that by upholding principles of finiteness of information one can entail such a possibility. We provide a toy model that shows how the past could be fundamentally (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  50. Measurement and Quantum Dynamics in the Minimal Modal Interpretation of Quantum Theory.Jacob A. Barandes & David Kagan - 2020 - Foundations of Physics 50 (10):1189-1218.
    Any realist interpretation of quantum theory must grapple with the measurement problem and the status of state-vector collapse. In a no-collapse approach, measurement is typically modeled as a dynamical process involving decoherence. We describe how the minimal modal interpretation closes a gap in this dynamical description, leading to a complete and consistent resolution to the measurement problem and an effective form of state collapse. Our interpretation also provides insight into the indivisible nature of measurement—the fact that you can't stop (...)
    Direct download (7 more)  
     
    Export citation  
     
    Bookmark   1 citation  
1 — 50 / 987