Results for 'Contradictions between Quantum Mechanics and General Relativity'

1000+ found
Order:
  1. “Fuzzy time”, from paradox to paradox (Does it solve the contradiction between Quantum Mechanics & General Relativity?).Farzad Didehvar - manuscript
    Although Fuzzy logic and Fuzzy Mathematics is a widespread subject and there is a vast literature about it, yet the use of Fuzzy issues like Fuzzy sets and Fuzzy numbers was relatively rare in time concept. This could be seen in the Fuzzy time series. In addition, some attempts are done in fuzzing Turing Machines but seemingly there is no need to fuzzy time. Throughout this article, we try to change this picture and show why it is helpful to consider (...)
    No categories
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  2.  90
    Quantum Mechanics and the Metrics of General Relativity.Paul O’Hara - 2005 - Foundations of Physics 35 (9):1563-1584.
    A one-to-one correspondence is established between linearized space-time metrics of general relativity and the wave equations of quantum mechanics. Also, the key role of boundary conditions in distinguishing quantum mechanics from classical mechanics, will emerge naturally from the procedure. Finally, we will find that the methodology will enable us to introduce not only test charges but also test masses by means of gauges.
    Direct download (9 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  3.  8
    The Problem of Time: Quantum Mechanics Versus General Relativity.Edward Anderson - 2017 - Cham: Imprint: Springer.
    This book is a treatise on time and on background independence in physics. It first considers how time is conceived of in each accepted paradigm of physics: Newtonian, special relativity, quantum mechanics (QM) and general relativity (GR). Substantial differences are moreover uncovered between what is meant by time in QM and in GR. These differences jointly source the Problem of Time: Nine interlinked facets which arise upon attempting concurrent treatment of the QM and GR (...)
    Direct download  
     
    Export citation  
     
    Bookmark   6 citations  
  4. About Fuzzy time-Particle interpretation of Quantum Mechanics (it is not an innocent one!) version one.Farzad Didehvar - manuscript
    The major point in [1] chapter 2 is the following claim: “Any formalized system for the Theory of Computation based on Classical Logic and Turing Model of Computation leads us to a contradiction.” So, in the case we wish to save Classical Logic we should change our Computational Model. As we see in chapter two, the mentioned contradiction is about and around the concept of time, as it is in the contradiction of modified version of paradox. It is natural to (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  5. General Relativity and Quantum Gravity in Terms of Quantum Measure: A philosophical comment.Vasil Penchev - 2020 - Logic and Philosophy of Mathematics eJournal (Elsevier: SSRN) 12 (17):1-37.
    The paper discusses the philosophical conclusions, which the interrelation between quantum mechanics and general relativity implies by quantum measure. Quantum measure is three-dimensional, both universal as the Borel measure and complete as the Lebesgue one. Its unit is a quantum bit (qubit) and can be considered as a generalization of the unit of classical information, a bit. It allows quantum mechanics to be interpreted in terms of quantum information, and (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  6. Putnam on Time and Special Relativity: A Long Journey from Ontology to Ethics.Mauro Dorato - 2008 - European Journal of Analytic Philosophy 4 (2):51-70.
    1.: In this paper I discuss Putnam’s view on time and the special theory of relativity. I first locate Putnam’s philosophical approach within a more general framework, essentially making reference to Sellar’s distinction between the scientific image and the manifest image of the world. I then reconstruct Putnam’s argument in favour of the reality of the future and the determinateness of truth-value for future tense sentences by showing that it is based on three premises that generate a (...)
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark   9 citations  
  7. Geometry of the Unification of Quantum Mechanics and Relativity of a Single Particle.A. Kryukov - 2011 - Foundations of Physics 41 (1):129-140.
    The paper summarizes, generalizes and reveals the physical content of a recently proposed framework that unifies the standard formalisms of special relativity and quantum mechanics. The framework is based on Hilbert spaces H of functions of four space-time variables x,t, furnished with an additional indefinite inner product invariant under Poincaré transformations. The indefinite metric is responsible for breaking the symmetry between space and time variables and for selecting a family of Hilbert subspaces that are preserved under (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  8. This Year's Nobel Prize (2022) in Physics for Entanglement and Quantum Information: the New Revolution in Quantum Mechanics and Science.Vasil Penchev - 2023 - Philosophy of Science eJournal (Elsevier: SSRN) 18 (33):1-68.
    The paper discusses this year’s Nobel Prize in physics for experiments of entanglement “establishing the violation of Bell inequalities and pioneering quantum information science” in a much wider, including philosophical context legitimizing by the authority of the Nobel Prize a new scientific area out of “classical” quantum mechanics relevant to Pauli’s “particle” paradigm of energy conservation and thus to the Standard model obeying it. One justifies the eventual future theory of quantum gravitation as belonging to the (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  9. A possible link between General Relativity and Quantum Mechanics.Johan C. Masreliez - forthcoming - Apeiron.
     
    Export citation  
     
    Bookmark  
  10. Is there incompatibility between the ways time is treated in general relativity and in standard quantum mechanics.Carlo Rovelli - 1991 - In Abhay Ashtekar & John Stachel (eds.), Conceptual Problems of Quantum Gravity. Birkhauser. pp. 126--140.
     
    Export citation  
     
    Bookmark   8 citations  
  11.  40
    Concept and Formalization of Constellatory Self-Unfolding: A Novel Perspective on the Relation between Quantum and Relativistic Physics.Albrecht von Müller & Elias Zafiris - 2018 - Cham: Springer. Edited by Elias Zafiris.
    This volume develops a fundamentally different categorical framework for conceptualizing time and reality. The actual taking place of reality is conceived as a “constellatory self-unfolding” characterized by strong self-referentiality and occurring in the primordial form of time, the not yet sequentially structured “time-space of the present.” Concomitantly, both the sequentially ordered aspect of time and the factual aspect of reality appear as emergent phenomena that come into being only after reality has actually taken place. In this new framework, time functions (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  12.  15
    Scale Expanding Cosmos IV-A possible link between General Relativity and Quantum Mechanics.C. Johan Masreliez - 2005 - Apeiron 12 (1):89.
    Direct download  
     
    Export citation  
     
    Bookmark  
  13.  4
    Quantum Mechanics, Being and Cognition.Ivan Katzarski - 2022 - Balkan Journal of Philosophy 14 (2):163-172.
    This article examines the epistemological views of key quantum physicists of the Copenhagen circle. The discussion begins with a presentation of their conception of measurement, indeterminacy and complementarity, and goes on to focus on their views regarding the nature of being and knowledge. The author identifies the basic areas of consensus in the Copenhagen circle as well as the disagreements and disputes that arose between its members. Three main points are argued: The fundamental epistemological consensus in the group (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  14.  12
    Quantum Mechanics Based on an Extended Least Action Principle and Information Metrics of Vacuum Fluctuations.Jianhao M. Yang - 2024 - Foundations of Physics 54 (3):1-31.
    We show that the formulations of non-relativistic quantum mechanics can be derived from an extended least action principle. The principle can be considered as an extension of the least action principle from classical mechanics by factoring in two assumptions. First, the Planck constant defines the minimal amount of action a physical system needs to exhibit during its dynamics in order to be observable. Second, there is constant vacuum fluctuation along a classical trajectory. A novel method is introduced (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  15.  50
    Remarks on the relation between general relativity and quantum theory.H. -H. V. Borzeszkowski & H. -J. Treder - 1982 - Foundations of Physics 12 (4):413-418.
    A discussion of the diffraction and scattering of particles by a grating shows that the experiment discussed by H. Hönl and by L. Rosenfeld in 1965 and again in 1981 does not reveal any contradiction between general relativity and quantum theory. Moreover, these theories, in principle, cannot refute one another because the (weak) principle of equivalence, underlying general relativity theory, entails that gravitation does not alter the laws of microphysics.
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  16. Quantum Measure from a Philosophical Viewpoint.Vasil Penchev - 2014 - Journal of Siberian Federal University. Humanities and Social Sciences 7 (1):4-19.
    The paper discusses the philosophical conclusions, which the interrelation between quantum mechanics and general relativity implies by quantum measure. Quantum measure is three-dimensional, both universal as the Borel measure and complete as the Lebesgue one. Its unit is a quantum bit (qubit) and can be considered as a generalization of the unit of classical information, a bit. It allows quantum mechanics to be interpreted in terms of quantum information, and (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  17. Quantum-information conservation. The problem about “hidden variables”, or the “conservation of energy conservation” in quantum mechanics: A historical lesson for future discoveries.Vasil Penchev - 2020 - Energy Engineering (Energy) eJournal (Elsevier: SSRN) 3 (78):1-27.
    The explicit history of the “hidden variables” problem is well-known and established. The main events of its chronology are traced. An implicit context of that history is suggested. It links the problem with the “conservation of energy conservation” in quantum mechanics. Bohr, Kramers, and Slaters (1924) admitted its violation being due to the “fourth Heisenberg uncertainty”, that of energy in relation to time. Wolfgang Pauli rejected the conjecture and even forecast the existence of a new and unknown then (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  18.  54
    Logics for quantum mechanics.Martin Strauss - 1973 - Foundations of Physics 3 (2):265-276.
    The two concepts of probability used in physics are analyzed from the formal and the material points of view. The standard theory corresponds toprob 1 (probability of the coexistence of two properties). A general logicomathematical theory ofprob 2 (probability of transition between states) is presented in axiomatic form. The underlying state algebra is neither Boolean nor Birkhoff-von Neumann but partial Boolean. In the Boolean subalgebras,prob 1 theory holds. The theory presented contains the logicomathematical foundations of quantum (...) and, as degenerate cases, the theories of stochastic games and of Markov chains. (shrink)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  19.  12
    Quantum theory, reconsideration of foundations 4: Växjö (Sweden), 11-16 June, 2007.Guillaume Adenier (ed.) - 2007 - Melville, N. Y.: American Institute of Physics.
    This conference was devoted to the 80 years of the Copenhagen Interpretation, and to the question of the relevance of the Copenhagen interpretation for the present understanding of quantum mechanics. It is in this framework that fundamental questions raised by quantum mechanics, especially in information theory, were discussed throughout the conference. As has become customary in our series of conference in Växjö, we were glad to welcome a fruitful assembly of theoretical physicists, experimentalists, mathematicians and even (...)
    Direct download  
     
    Export citation  
     
    Bookmark  
  20. The Kochen - Specker theorem in quantum mechanics: a philosophical comment (part 1).Vasil Penchev - 2013 - Philosophical Alternatives 22 (1):67-77.
    Non-commuting quantities and hidden parameters – Wave-corpuscular dualism and hidden parameters – Local or nonlocal hidden parameters – Phase space in quantum mechanics – Weyl, Wigner, and Moyal – Von Neumann’s theorem about the absence of hidden parameters in quantum mechanics and Hermann – Bell’s objection – Quantum-mechanical and mathematical incommeasurability – Kochen – Specker’s idea about their equivalence – The notion of partial algebra – Embeddability of a qubit into a bit – Quantum (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  21. Fuzzy Time, from Paradox to Paradox.Farzad Didehvar - manuscript
    Although Fuzzy logic and Fuzzy Mathematics is a widespread subject and there is a vast literature about it, yet the use of Fuzzy issues like Fuzzy sets and Fuzzy numbers was relatively rare in time concept. This could be seen in the Fuzzy time series. In addition, some attempts are done in fuzzing Turing Machines but seemingly there is no need to fuzzy time. Throughout this article, we try to change this picture and show why it is helpful to consider (...)
     
    Export citation  
     
    Bookmark  
  22.  34
    Unity in quantum theory.Alfred Landé - 1971 - Foundations of Physics 1 (3):191-202.
    After a brief survey of arguments for a unitary particle theory of matter, offered by the writer in previous publications, the following new items are discussed. (1) The wave part of the dual aspect of matter, resting on the translation formula λ=h/p, is not covariant in the nonrelativistic domain. And relativistically, it is untenable not only on methodological grounds, but because it leads to obvious contradictions to elementary experience, e.g., in the equilibrium between a material oscillator and radiation. (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  23. Einstein's Revolution: Reconciliation of Mechanics, Electrodynamics and Thermodynamics.Rinat M. Nugayev - 2000 - Physis.Rivista Internazionale Di Storia Della Scienza (1):181-207.
    The aim of this paper is to make a step towards a complete description of Special Relativity genesis and acceptance, bringing some light on the intertheoretic relations between Special Relativity and other physical theories of the day. I’ll try to demonstrate that Special Relativity and the Early Quantum Theory were created within the same programme of statistical mechanics, thermodynamics and Maxwellian electrodynamics reconciliation, i.e. elimination of the contradictions between the consequences of this (...)
    Direct download  
     
    Export citation  
     
    Bookmark  
  24. Superstrings and the Foundations of Quantum Mechanics.Gerard ’T. Hooft - 2014 - Foundations of Physics 44 (5):463-471.
    It is put forward that modern elementary particle physics cannot be completely unified with the laws of gravity and general relativity without addressing the question of the ontological interpretation of quantum mechanics itself. The position of superstring theory in this general question is emphasized: superstrings may well form exactly the right mathematical system that can explain how quantum mechanics can be linked to a deterministic picture of our world. Deterministic interpretations of quantum (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  25. The Kochen - Specker theorem in quantum mechanics: a philosophical comment (part 2).Vasil Penchev - 2013 - Philosophical Alternatives 22 (3):74-83.
    The text is a continuation of the article of the same name published in the previous issue of Philosophical Alternatives. The philosophical interpretations of the Kochen- Specker theorem (1967) are considered. Einstein's principle regarding the,consubstantiality of inertia and gravity" (1918) allows of a parallel between descriptions of a physical micro-entity in relation to the macro-apparatus on the one hand, and of physical macro-entities in relation to the astronomical mega-entities on the other. The Bohmian interpretation ( 1952) of quantum (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   4 citations  
  26. Dirac’s Refined Unification of Quantum Mechanics and Special Relativity: An Intertheoretic Context.Rinat M. Nugayev - 2022 - Teorie Vědy / Theory of Science 44 (1):37-57.
    One of the key episodes of history of modern physics – Paul Dirac’s startling contrivance of the relativistic theory of the electron – is elicited in the context of lucid epistemological model of mature theory change. The peculiar character of Dirac’s synthesis of special relativity and quantum mechanics is revealed by comparison with Einstein’s sophisticated methodology of the General Relativity contrivance. The subtle structure of Dirac’s scientific research program and first and foremost the odd principles (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  27.  25
    Ontology and Mathematics in Classical Field Theories and Quantum Mechanics.Adriano Angelucci & Vincenzo Fano - 2010 - Humana Mente 4 (13).
    A draft of a possible comparison between the use made of mathematics in classical field theories and in quantum mechanics is presented. Hilbert’s space formalism, although not only elegant and powerful but intuitive as well, does not give us a spatio-temporal representation of physical events. The picture of the electromagnetic field as an entity which is real in itself– i.e., as a wave without support – fostered by the emergence of special relativity can be seen as (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  28.  23
    Energy and Uncertainty in General Relativity.F. I. Cooperstock & M. J. Dupre - 2018 - Foundations of Physics 48 (4):387-394.
    The issue of energy and its potential localizability in general relativity has challenged physicists for more than a century. Many non-invariant measures were proposed over the years but an invariant measure was never found. We discovered the invariant localized energy measure by expanding the domain of investigation from space to spacetime. We note from relativity that the finiteness of the velocity of propagation of interactions necessarily induces indefiniteness in measurements. This is because the elements of actual physical (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  29.  60
    Potentiality and Contradiction in Quantum Mechanics.Jonas R. B. Arenhart & Decio Krause - unknown
    Following J.-Y.Béziau in his pioneer work on non-standard interpretations of the traditional square of opposition, we have applied the abstract structure of the square to study the relation of opposition between states in superposition in orthodox quantum mechanics in [1]. Our conclusion was that such states are contraries, contradicting previous analyzes that have led to different results, such as those claiming that those states represent contradictory properties. In this chapter we bring the issue once again into the (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   9 citations  
  30.  7
    On the relation between quantum mechanical probabilities and event frequencies.C. Anastopoulos - 2004 - Annals of Physics 313:368-382.
    The probability ‘measure’ for measurements at two consecutive mo- ments of time is non-additive. These probabilities, on the other hand, may be determined by the limit of relative frequency of measured events, which are by nature additive. We demonstrate that there are only two ways to resolve this problem. The first solution places emphasis on the precise use of the concept of conditional probability for successive mea- surements. The physically correct conditional probabilities define additive probabilities for two-time measurements. These probabilities (...)
    Direct download  
     
    Export citation  
     
    Bookmark   1 citation  
  31.  21
    Riccati Equations as a Scale-Relativistic Gateway to Quantum Mechanics.Saeed Naif Turki Al-Rashid, Mohammed A. Z. Habeeb & Tugdual S. LeBohec - 2020 - Foundations of Physics 50 (3):191-203.
    Applying the resolution–scale relativity principle to develop a mechanics of non-differentiable dynamical paths, we find that, in one dimension, stationary motion corresponds to an Itô process driven by the solutions of a Riccati equation. We verify that the corresponding Fokker–Planck equation is solved for a probability density corresponding to the squared modulus of the solution of the Schrödinger equation for the same problem. Inspired by the treatment of the one-dimensional case, we identify a generalization to time dependent problems (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  32. Relational quantum mechanics and the determinacy problem.Matthew J. Brown - 2009 - British Journal for the Philosophy of Science 60 (4):679-695.
    Carlo Rovelli's relational interpretation of quantum mechanics holds that a system's states or the values of its physical quantities as normally conceived only exist relative to a cut between a system and an observer or measuring instrument. Furthermore, on Rovelli's account, the appearance of determinate observations from pure quantum superpositions happens only relative to the interaction of the system and observer. Jeffrey Barrett ([1999]) has pointed out that certain relational interpretations suffer from what we might call (...)
    Direct download (15 more)  
     
    Export citation  
     
    Bookmark   22 citations  
  33.  41
    Physical Relativity: Space-Time Structure From a Dynamical Perspective.Harvey R. Brown - 2005 - Oxford, GB: Oxford University Press UK.
    Physical Relativity explores the nature of the distinction at the heart of Einstein's 1905 formulation of his special theory of relativity: that between kinematics and dynamics. Einstein himself became increasingly uncomfortable with this distinction, and with the limitations of what he called the 'principle theory' approach inspired by the logic of thermodynamics. A handful of physicists and philosophers have over the last century likewise expressed doubts about Einstein's treatment of the relativistic behaviour of rigid bodies and clocks (...)
  34. Quantum Mechanics and the Philosophy of Alfred North Whitehead.Michael Epperson - 2004 - New York: Fordham University Press.
    In Process and Reality and other works, Alfred North Whitehead struggled to come to terms with the impact the new science of quantum mechanics would have on metaphysics. -/- This ambitious book is the first extended analysis of the intricate relationships between relativity theory, quantum mechanics, and Whitehead's cosmology. Michael Epperson illuminates the intersection of science and philosophy in Whitehead's work-and details Whitehead's attempts to fashion an ontology coherent with quantum anomalies. -/- Including (...)
    Direct download (6 more)  
     
    Export citation  
     
    Bookmark   17 citations  
  35.  9
    Quantum Systems under Gravitational Time Dilation.Magdalena Zych - 2017 - Cham: Imprint: Springer.
    This thesis introduces a new theoretical tool to explore the notion of time and temporal order in quantum mechanics: the relativistic quantum "clock" framework. It proposes novel thought experiments showing that proper time can display quantum features, e.g. when a "clock" runs different proper times in superposition. The resulting new physical effects can be tested in near-future laboratory experiments (with atoms, molecules and photons as "clocks"). The notion of time holds the key to the regime where (...)
    Direct download  
     
    Export citation  
     
    Bookmark  
  36.  68
    Stochastic Einstein-locality and the bell theorems.Geoffrey Hellman - 1982 - Synthese 53 (3):461 - 504.
    Standard proofs of generalized Bell theorems, aiming to restrict stochastic, local hidden-variable theories for quantum correlation phenomena, employ as a locality condition the requirement of conditional stochastic independence. The connection between this and the no-superluminary-action requirement of the special theory of relativity has been a topic of controversy. In this paper, we introduce an alternative locality condition for stochastic theories, framed in terms of the models of such a theory (§2). It is a natural generalization of a (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   23 citations  
  37. Is Minkowski Space-Time Compatible with Quantum Mechanics?Eugene V. Stefanovich - 2002 - Foundations of Physics 32 (5):673-703.
    In quantum relativistic Hamiltonian dynamics, the time evolution of interacting particles is described by the Hamiltonian with an interaction-dependent term (potential energy). Boost operators are responsible for (Lorentz) transformations of observables between different moving inertial frames of reference. Relativistic invariance requires that interaction-dependent terms (potential boosts) are present also in the boost operators and therefore Lorentz transformations depend on the interaction acting in the system. This fact is ignored in special relativity, which postulates the universality of Lorentz (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  38.  76
    On the Consistency between the Assumption of a Special System of Reference and Special Relativity.Vasco Guerra & Rodrigo de Abreu - 2006 - Foundations of Physics 36 (12):1826-1845.
    In a previous work, we have shown that the null result of the Michelson–Morley experiment in vacuum is deeply connected with the notion of time. The same is true for the postulate of constancy of the two-way speed of light in vacuum in all frames independently of the state of motion of the emitting body. The argumentation formerly given is very general and has to be true not only within Special Relativity and its “equivalence” of all inertial frames, (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  39.  23
    The Heuristic Power of Theory Classification, the Case of General Relativity.Diego Maltrana & Nicolás Sepúlveda-Quiroz - 2022 - Foundations of Physics 52 (4):1-24.
    In this article, we explore the heuristic power of the theoretical distinction between framework and interaction theories applied to the case of General Relativity. According to the distinction, theories and theoretical elements can be classified into two different groups, each with clear ontological, epistemic and functional content. Being so, to identify the group to which a theory belongs would suffice to know a priori its prospects and limitations in these areas without going into a detailed technical analysis. (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   3 citations  
  40. Consciousness and special relativity.F. de Silva - 1996 - IEEE Engineering in Medicine and Biology Magazine 15:21-26.
    A description of consciousness leads to a contradiction with the postulation from special relativity that there can be no connections between simultaneous event. This contradiction points to consciousness involving quantum level mechanisms. The Quantum level description of the universe is re- evaluated in the light of what is observed in consciousness namely 4 Dimensional objects. A new improved interpretation of Quantum level observations is introduced. From this vantage point the following axioms of consciousness is presented. (...)
    Direct download  
     
    Export citation  
     
    Bookmark  
  41.  77
    Measurement and the Interpretation of Quantum Mechanics and Relativity Theory.W. M. De Muynck - 1995 - Synthese 102 (2):293 - 318.
    The axiomatic approaches of quantum mechanics and relativity theory are compared with approaches in which the theories are thought to describe readings of certain measurement operations. The usual axioms are shown to correspond with classes of ideal measurements. The necessity is discussed of generalizing the formalisms of both quantum mechanics and relativity theory so as to encompass more realistic nonideal measurements. It is argued that this generalization favours an empiricist interpretation of the mathematical formalisms (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark  
  42.  5
    Relational Quantum Mechanics and Intuitionistic Mathematics.Charles B. Crane - 2024 - Foundations of Physics 54 (3):1-12.
    We propose a model of physics that blends Rovelli’s relational quantum mechanics (RQM) interpretation with the language of finite information quantities (FIQs), defined by Gisin and Del Santo in the spirit of intuitionistic mathematics. We discuss deficiencies of using real numbers to model physical systems in general, and particularly under the RQM interpretation. With this motivation for an alternative mathematical language, we propose the use of FIQs to model the world under the RQM interpretation, wherein we view (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  43.  28
    Quantum Mechanics and the Principle of Least Radix Economy.Vladimir Garcia-Morales - 2015 - Foundations of Physics 45 (3):295-332.
    A new variational method, the principle of least radix economy, is formulated. The mathematical and physical relevance of the radix economy, also called digit capacity, is established, showing how physical laws can be derived from this concept in a unified way. The principle reinterprets and generalizes the principle of least action yielding two classes of physical solutions: least action paths and quantum wavefunctions. A new physical foundation of the Hilbert space of quantum mechanics is then accomplished and (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  44.  22
    Relational Quantum Mechanics, quantum relativism, and the iteration of relativity.Timotheus Riedel - 2024 - Studies in History and Philosophy of Science Part A 104 (C):109-118.
    The idea that the dynamical properties of quantum systems are invariably relative to other systems has recently regained currency. Using Relational Quantum Mechanics (RQM) for a case study, this paper calls attention to a question that has been underappreciated in the debate about quantum relativism: the question of whether relativity iterates. Are there absolute facts about the properties one system possesses relative to a specified reference, or is this again a relative matter, and so on? (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  45.  12
    Building Spacetime from Effective Interactions Between Quantum Fluctuations.Anna Karlsson - 2023 - Foundations of Physics 53 (2):1-32.
    We describe how a model of effective interactions between quantum fluctuations under certain assumptions can be constructed in a way so that the large-scale limit gives an effective theory that matches general relativity (GR) in vacuum regions. This is an investigation of a possible scenario of spacetime emergence from quantum interactions directly in the spacetime, and of how effective quantum behaviour might provide a useful link between detailed properties of quantum interactions and (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  46.  52
    Quantum mechanics and the physical reality concept.Horst-Heino von Borzeszkowski & Renate Wahsner - 1988 - Foundations of Physics 18 (6):669-681.
    The difference between the measurement bases of classical and quantum mechanics is often interpreted as a loss of reality arising in quantum mechanics. In this paper it is shown that this apparent loss occurs only if one believes that refined everyday experience determines the Euclidean space as the real space, instead of considering this space, both in classical and quantum mechanics, as a theoretical construction needed for measurement and representing one part of a (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  47. Measurement and the interpretation of quantum mechanics and relativity theory.W. M. de Muynck - 1995 - Synthese 102 (2):293-318.
    The axiomatic approaches of quantum mechanics and relativity theory are compared with approaches in which the theories are thought to describe readings of certain measurement operations. The usual axioms are shown to correspond with classes of ideal measurements. The necessity is discussed of generalizing the formalisms of both quantum mechanics and relativity theory so as to encompass more realistic nonideal measurements. It is argued that this generalization favours an empiricist interpretation of the mathematical formalisms (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  48.  80
    The 'Decoherence' Approach to the Measurement Problem in Quantum Mechanics.Andrew Elby - 1994 - PSA: Proceedings of the Biennial Meeting of the Philosophy of Science Association 1994:355 - 365.
    Decoherence results from the dissipative interaction between a quantum system and its environment. As the system and environment become entangled, the reduced density operator describing the system "decoheres" into a mixture (with the interference terms damped out). This formal result prompts some to exclaim that the measurement problem is solved. I will scrutinize this claim by examining how modal and relative-state interpretations can use decoherence. Although decoherence cannot rescue these interpretations from general metaphysical difficulties, decoherence may help (...)
    Direct download  
     
    Export citation  
     
    Bookmark   7 citations  
  49.  73
    Quantum mechanics and molecular design in the twenty first century.Mark Eberhart - 2002 - Foundations of Chemistry 4 (3):201-211.
    It is argued that the conventional descriptions of chemical bonds as covalent, ionic, metallic, and Van der Waals are compromising the usefulness of quantum mechanics in the synthesis and design of new molecules and materials. Parallels are drawn between the state of chemistry now and when the idea that phlogiston was an element impeded the development of chemistry. Overcoming the current obstacles will require new methods to describe molecular structure and bonding, just as new concepts were needed (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   4 citations  
  50. Quantum Mechanics and "Song of Myself": Getting a Grip on Reality.Robert M. Schaible - 2003 - Zygon 38 (1):25-48.
    Most recent writing linking science and literature has concerned itself with challenges to the epistemological status of scientific knowledge in an attempt to demonstrate its contingency, arguing in the more radical efforts that the structures of science are no more than useful fictions. This essay also includes an epistemological comparison between science and literature, but instead of making grand or meta–statements about the nature of knowing generally in the two fields, mine is a much narrower aim. My exploration entails (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
1 — 50 / 1000