Results for 'nonrelativistic quantum mechanics'

1000+ found
Order:
  1.  28
    Nonrelativistic Quantum Mechanics with Fundamental Environment.Ashot S. Gevorkyan - 2011 - Foundations of Physics 41 (3):509-515.
    Spontaneous transitions between bound states of an atomic system, “Lamb Shift” of energy levels and many other phenomena in real nonrelativistic quantum systems are connected within the influence of the quantum vacuum fluctuations (fundamental environment (FE)) which are impossible to consider in the limits of standard quantum-mechanical approaches. The joint system “quantum system (QS) + FE” is described in the framework of the stochastic differential equation (SDE) of Langevin-Schrödinger (L-Sch) type, and is defined on the (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark  
  2.  87
    Einstein's Dissatisfaction with Nonrelativistic Quantum Mechanics and Relativistic Quantum Field Theory.Miklós Rédei - 2010 - Philosophy of Science 77 (5):1042-1057.
    It is argued that in his critique of standard nonrelativistic quantum mechanics Einstein formulated three requirements as necessary for a physical theory to be compatible with the field-theorectical paradigm, and it is shown that local, relativistic, algebraic quantum field theory typically satisfies those criteria-although, there are still open questions concerning the status of operational separability of quantum systems localized in space like separated space-time regions. It is concluded that local algebraic quantum field theory can (...)
    Direct download (6 more)  
     
    Export citation  
     
    Bookmark   4 citations  
  3. A New Argument for the Nomological Interpretation of the Wave Function: The Galilean Group and the Classical Limit of Nonrelativistic Quantum Mechanics.Valia Allori - 2017 - International Studies in the Philosophy of Science (2):177-188.
    In this paper I investigate, within the framework of realistic interpretations of the wave function in nonrelativistic quantum mechanics, the mathematical and physical nature of the wave function. I argue against the view that mathematically the wave function is a two-component scalar field on configuration space. First, I review how this view makes quantum mechanics non- Galilei invariant and yields the wrong classical limit. Moreover, I argue that interpreting the wave function as a ray, in (...)
    Direct download (9 more)  
     
    Export citation  
     
    Bookmark   9 citations  
  4.  61
    The underlying Brownian motion of nonrelativistic quantum mechanics.E. Santamato & B. H. Lavenda - 1981 - Foundations of Physics 11 (9-10):653-678.
    Nonrelativistic quantum mechanics can be derived from real Markov diffusion processes by extending the concept of probability measure to the complex domain. This appears as the only natural way of introducing formally classical probabilistic concepts into quantum mechanics. To every quantum state there is a corresponding complex Fokker-Planck equation. The particle drift is conditioned by an auxiliary equation which is obtained through stochastic energy conservation; the logarithmic transform of this equation is the Schrödinger equation. (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  5.  49
    A Velocity Field and Operator for Spinning Particles in (Nonrelativistic) Quantum Mechanics.Giovanni Salesi & Erasmo Recami - 1998 - Foundations of Physics 28 (5):763-773.
    Starting from the formal expressions of the hydrodynamical (or “local”) quantities employed in the applications of Clifford algebras to quantum mechanics, we introduce—in terms of the ordinary tensorial language—a new definition for the field of a generic quantity. By translating from Clifford into tensor algebra, we also propose a new (nonrelativistic) velocity operator for a spin- ${\frac{1}{2}}$ particle. This operator appears as the sum of the ordinary part p/m describing the mean motion (the motion of the center-of-mass), (...)
    Direct download (8 more)  
     
    Export citation  
     
    Bookmark   6 citations  
  6.  24
    Email: Unruh@ physics. Ubc. ca.is Quantum Mechanics Non-Local - 2002 - In T. Placek & J. Butterfield (eds.), Non-Locality and Modality. Kluwer Academic Publishers.
  7.  28
    Spin-Zero Particles must be Bosons: A New Proof within Nonrelativistic Quantum Mechanics[REVIEW]Murray Peshkin - 2006 - Foundations of Physics 36 (1):19-29.
    The key assumption is that of Leinaas and Myrheim and of Berry and Robbins, here specialized to spin zero: for n particles, the argument of the wave function should be the unordered multiplet {r 1,r 2,...,r n }. I also make use of the requirement that wave functions in the domain of the Hamiltonian must be continuous functions of the spatial variables. The new proof presented here has advantages of simplicity and transparency in comparison with earlier work based on the (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  8.  68
    The operator formalism of quantum mechanics from the viewpoint of short disturbances in nonrelativistic classical motion.Peter D. Finch - 1984 - Foundations of Physics 14 (4):281-306.
    The effect of short disturbances on nonrelativistic motion is formulated in terms of operators. Analogies with quantum mechanics are developed and some disparities noted. For the one-dimensional particle we obtain analogues of the de Broglie wave commonly associated with particle motion, Heisenberg's commutation relation, Schrödinger's equation, and the statistical interpretation. Whether these results have any bearing on quantum mechanics itself is left an open question.
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  9. Quantum mechanics in terms of realism.Arthur Jabs - 2017 - arXiv.Org.
    We expound an alternative to the Copenhagen interpretation of the formalism of nonrelativistic quantum mechanics. The basic difference is that the new interpretation is formulated in the language of epistemological realism. It involves a change in some basic physical concepts. The ψ function is no longer interpreted as a probability amplitude of the observed behaviour of elementary particles but as an objective physical field representing the particles themselves. The particles are thus extended objects whose extension varies in (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   7 citations  
  10. Time-Symmetric Quantum Mechanics.K. B. Wharton - 2007 - Foundations of Physics 37 (1):159-168.
    A time-symmetric formulation of nonrelativistic quantum mechanics is developed by applying two consecutive boundary conditions onto solutions of a time- symmetrized wave equation. From known probabilities in ordinary quantum mechanics, a time-symmetric parameter P0 is then derived that properly weights the likelihood of any complete sequence of measurement outcomes on a quantum system. The results appear to match standard quantum mechanics, but do so without requiring a time-asymmetric collapse of the wavefunction upon (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   16 citations  
  11.  23
    Quantum mechanics based on position.Ralph H. Young - 1980 - Foundations of Physics 10 (1-2):33-56.
    The only observational quantity which quantum mechanics needs to address islocation. The typical primitive observation on a microsystem (e.g., photon) isdetection at alocation (e.g., by a photomultiplier “looking at” a grating). To analyze an experiment, (a) form a conceptual ensemble of replicas of it, (b) assign a wave function (in “position representation”) to its initial condition, (c) evolve the wave function by the Schrödinger equation (known, once and for all, as a function of the system's composition), (d) compute (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  12.  86
    What quantum mechanics describes is discontinuous motion of particles.Shan Gao - 2001
    We present a theory of discontinuous motion of particles in continuous space-time. We show that the simplest nonrelativistic evolution equation of such motion is just the Schroedinger equation in quantum mechanics. This strongly implies what quantum mechanics describes is discontinuous motion of particles. Considering the fact that space-time may be essentially discrete when considering gravity, we further present a theory of discontinuous motion of particles in discrete space-time. We show that its evolution will naturally result (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  13.  36
    What is Quantum Mechanics? A Minimal Formulation.R. Friedberg & P. C. Hohenberg - 2018 - Foundations of Physics 48 (3):295-332.
    This paper presents a minimal formulation of nonrelativistic quantum mechanics, by which is meant a formulation which describes the theory in a succinct, self-contained, clear, unambiguous and of course correct manner. The bulk of the presentation is the so-called “microscopic theory”, applicable to any closed system S of arbitrary size N, using concepts referring to S alone, without resort to external apparatus or external agents. An example of a similar minimal microscopic theory is the standard formulation of (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  14.  90
    Axiomatic foundations of non-relativistic quantum mechanics: A realistic approach.S. E. Perez Bergliaffa, Gustavo E. Romero & H. Vucetich - 1993 - International Journal of Theoretical Physics 32 (9):1507-1522.
    A realistic axiomatic formulation of nonrelativistic quantum mechanics for a single microsystem with spin is presented, from which the most important theorems of the theory can be deduced. In comparison with previous formulations, the formal aspect has been improved by the use of certain mathematical theories, such as the theory of equipped spaces, and group theory. The standard formalism is naturally obtained from the latter, starting from a central primitive concept: the Galilei group.
    Direct download  
     
    Export citation  
     
    Bookmark   10 citations  
  15.  34
    Doubly stochastic matrices in quantum mechanics.James D. Louck - 1997 - Foundations of Physics 27 (8):1085-1104.
    The general set of doubly stochastic matrices of order n corresponding to ordinary nonrelativistic quantum mechanical transition probability matrices is given. Landé's discussion of the nonquantal origin of such matrices is noted. Several concrete examples are presented for elementary and composite angular momentum systems with the focus on the unitary symmetry associated with such systems in the spirit of the recent work of Bohr and Ulfbeck. Birkhoff's theorem on doubly stochastic matrices of order n is reformulated in a (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  16.  33
    Spin-Statistics Connection for Relativistic Quantum Mechanics.A. F. Bennett - 2015 - Foundations of Physics 45 (4):370-381.
    The spin-statistics connection has been proved for nonrelativistic quantum mechanics . The proof is extended here to the relativistic regime using the parametrized Dirac equation. A causality condition is not required.
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  17. The rise and fall of time-symmetrized quantum mechanics.W. David Sharp & Niall Shanks - 1993 - Philosophy of Science 60 (3):488-499.
    In the context of a discussion of time symmetry in the quantum mechanical measurement process, Aharonov et al. (1964) derived an expression concerning probabilities for the outcomes of measurements conducted on systems which have been pre- and postselected on the basis of both preceding and succeeding measurements. Recent literature has claimed that a resulting "time-symmetrized" interpretation of quantum mechanics has significant implications for some basic issues, such as contextuality and determinateness, in elementary, nonrelativistic quantum (...). Bub and Brown (1986) have shown that under the standard interpretation of the aforementioned expression, these claims employ ensembles which are not well defined. It is argued here that under a counterfactual interpretation of the expression, these claims may be understood as employing well-defined ensembles; it is shown, however, that such an interpretation cannot be reconciled with the standard interpretation of quantum mechanics. (shrink)
    Direct download (8 more)  
     
    Export citation  
     
    Bookmark   10 citations  
  18.  70
    Next Best Thing—What Can Quantum Mechanics Tell Us About the Fundamental Ontology of the World?Bixin Guo - manuscript
    Many discussions in the metaphysics and philosophy of physics literature aim to use physics as a guide to elucidate what the world really, fundamentally is like. However, we don’t yet have a confirmed fundamental theory of physics—what’s the next best thing we can possibly say about the fundamental that is properly informed by our best theories of physics? This paper offers a starting point to address this question. It focuses on the literature on the ontology of quantum mechanics, (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  19.  6
    The Emerging Quantum: The Physics Behind Quantum Mechanics.Luis de la Peña - 2015 - Cham: Imprint: Springer. Edited by Ana María Cetto & Andrea Valdés Hernández.
    This monograph presents the latest findings from a long-term research project intended to identify the physics behind Quantum Mechanics. A fundamental theory for quantum mechanics is constructed from first physical principles, revealing quantization as an emergent phenomenon arising from a deeper stochastic process. As such, it offers the vibrant community working on the foundations of quantum mechanics an alternative contribution open to discussion. The book starts with a critical summary of the main conceptual problems (...)
    No categories
    Direct download  
     
    Export citation  
     
    Bookmark   3 citations  
  20. An interpretation of the formalism of quantum mechanics in terms of realism.Arthur Jabs - 1992 - British Journal for the Philosophy of Science 43 (3):405-421.
    We present an alternative to the Copenhagen interpretation of the formalism of nonrelativistic quantum mechanics. The basic difference is that the new inter- pretation is formulated in the language of epistemological realism. It involves a change in some basic physical concepts. Elementary particles are considered as extended objects and nonlocal effects are included. The role of the new concepts in the problems of measurement and of the Einstein-Podolsky-Rosen correlations is described. Experiments to distinguish the proposed interpretation from (...)
    Direct download (14 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  21.  36
    A Local-Realistic Model of Quantum Mechanics Based on a Discrete Spacetime.Antonio Sciarretta - 2018 - Foundations of Physics 48 (1):60-91.
    This paper presents a realistic, stochastic, and local model that reproduces nonrelativistic quantum mechanics results without using its mathematical formulation. The proposed model only uses integer-valued quantities and operations on probabilities, in particular assuming a discrete spacetime under the form of a Euclidean lattice. Individual particle trajectories are described as random walks. Transition probabilities are simple functions of a few quantities that are either randomly associated to the particles during their preparation, or stored in the lattice nodes (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark  
  22.  9
    Role of the Electromagnetic Vacuum in the Transition from Classical to Quantum Mechanics.Luis de la Peña & Ana María Cetto - 2022 - Foundations of Physics 52 (4):1-17.
    We revisit the nonrelativistic problem of a bound, charged particle subject to the random zero-point radiation field, with the purpose of revealing the mechanism that takes it from the initially classical description to the final quantum-mechanical one. The combined effect of the zpf and the radiation reaction force results, after a characteristic time lapse, in the loss of the initial conditions and the concomitant irreversible transition of the dynamics to a stationary regime controlled by the field. In this (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  23.  44
    On the electromagnetic interaction in relativistic quantum mechanics.L. P. Horwitz - 1984 - Foundations of Physics 14 (10):1027-1046.
    A fundamental problem in the construction of local electromagnetic interactions in the framework of relativistic wave equations of Klein-Gordon or Dirac type is discussed, and shown to be resolved in a relativistic quantum theory of events described by functions in a Hilbert space on the manifold of space-time. The relation, abstracted from the structure of the electromagnetic current, between sequences of events, parametrized by an evolution parameter τ (“historical time”), and the commonly accepted notion of particles is reviewed. As (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   3 citations  
  24.  23
    Bohmian mechanics and quantum theory: an appraisal.James T. Cushing, Arthur Fine & Sheldon Goldstein - 1996 - Springer.
    We are often told that quantum phenomena demand radical revisions of our scientific world view and that no physical theory describing well defined objects, such as particles described by their positions, evolving in a well defined way, let alone deterministically, can account for such phenomena. The great majority of physicists continue to subscribe to this view, despite the fact that just such a deterministic theory, accounting for all of the phe nomena of nonrelativistic quantum mechanics, was (...)
    Direct download  
     
    Export citation  
     
    Bookmark   29 citations  
  25.  30
    Physical uniformities on the state space of nonrelativisitic quantum mechanics.Reinhard Werner - 1983 - Foundations of Physics 13 (8):859-881.
    Uniformities describing the distinguishability of states and of observables are discussed in the context of general statistical theories and are shown to be related to distinguished subspaces of continuous observables and states, respectively. The usual formalism of quantum mechanics contains no such physical uniformity for states. Using recently developed tools of quantum harmonic analysis, a natural one-to-one correspondence between continuous subspaces of nonrelativistic quantum and classical mechanics is established, thus exhibiting a close interrelation between (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  26.  36
    On the causal interpretation of quantum mechanics.Yu P. Rybakov - 1974 - Foundations of Physics 4 (2):149-161.
    The simplest nonlinear spinor field equation admitting regular stationary solutions is considered. Following a causal interpretation of quantum mechanics, given by de Broglie in his double solution theory, these regular solutions must be regarded as describing the internal particle structure. Using this spinor field model, an attempt is made to give a statistical description of one-particle experiments by means of a Gibbsian assemblage method. It is shown that in the limiting case of pointlike nonrelativistic particles this method (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  27.  43
    Interpretation of the hydrodynamical formalism of quantum mechanics.Sebastiano Sonego - 1991 - Foundations of Physics 21 (10):1135-1181.
    The hydrodynamical formalism for the quantum theory of a nonrelativistic particle is considered, together with a reformulation of it which makes use of the methods of kinetic theory and is based on the existence of the Wigner phase-space distribution. It is argued that this reformulation provides strong evidence in favor of the statistical interpretation of quantum mechanics, and it is suggested that this latter could be better understood as an almost classical statistical theory. Moreover, it is (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   3 citations  
  28.  20
    The Generalized Representation of Particle Localization in Quantum Mechanics.G. F. Melloy - 2002 - Foundations of Physics 32 (4):503-530.
    It has been shown earlier that while strict localization of the free Dirac particle is not describable within the usual mathematical formalism, it is possible to describe sequences of positive-energy states whose spread Δ x =〈(x−x 0)2〉 about any given point x 0 approaches zero, where x is Dirac's position operator. The concept of a generalized function is extended here to allow for the succinct description of localized states in terms of “Asymptotic Localizing Functions.” Localization of both the nonrelativistic (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark  
  29.  80
    Nonlocally correlated trajectories in two-particle quantum mechanics.C. Dewdney - 1988 - Foundations of Physics 18 (9):867-886.
    In this paper we present a series of computer calculations carried out in order to demonstrate exactly how the de Broglie-Bohm interpretation works for two-particle quantum mechanics. In particular, we show how the de Broglie-Bohm interpretation can account for the essential features of nonrelativistic, two-particle quantum mechanics in terms of well-defined, correlated, individual particle trajectories and spin vectors. We demonstrate exactly how both quantum statistics and the correlations observed in Einstein-Podolsky-Rosen experiments can be explained (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  30. Connections Between the Thermodynamics of Classical Electrodynamic Systems and Quantum Mechanical Systems for Quasielectrostatic Operations.Daniel C. Cole - 1999 - Foundations of Physics 29 (12):1819-1847.
    The thermodynamic behavior is analyzed of a single classical charged particle in thermal equilibrium with classical electromagnetic thermal radiation, while electrostatically bound by a fixed charge distribution of opposite sign. A quasistatic displacement of this system in an applied electrostatic potential is investigated. Treating the system nonrelativistically, the change in internal energy, the work done, and the change in caloric entropy are all shown to be expressible in terms of averages involving the distribution of the position coordinates alone. A convenient (...)
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  31.  43
    Imprints of the Quantum World in Classical Mechanics.Maurice A. de Gosson & Basil J. Hiley - 2011 - Foundations of Physics 41 (9):1415-1436.
    The imprints left by quantum mechanics in classical (Hamiltonian) mechanics are much more numerous than is usually believed. We show that the Schrödinger equation for a nonrelativistic spinless particle is a classical equation which is equivalent to Hamilton’s equations. Our discussion is quite general, and incorporates time-dependent systems. This gives us the opportunity of discussing the group of Hamiltonian canonical transformations which is a non-linear variant of the usual symplectic group.
    Direct download (6 more)  
     
    Export citation  
     
    Bookmark   5 citations  
  32.  20
    The nonrelativistic Schrödinger equation in “quasi-classical” theory.J. W. G. Wignall - 1987 - Foundations of Physics 17 (2):123-147.
    The author has recently proposed a “quasi-classical” theory of particles and interactions in which particles are pictured as extended periodic disturbances in a universal field χ(x, t), interacting with each other via nonlinearity in the equation of motion for χ. The present paper explores the relationship of this theory to nonrelativistic quantum mechanics; as a first step, it is shown how it is possible to construct from χ a configuration-space wave function Ψ(x 1,x 2,t), and that the (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  33. Quantum Theory: An Appraisal.Bohmian Mechanics - 1995 - Boston Studies in the Philosophy of Science 184.
  34.  61
    Quantum Hamiltonians and stochastic jumps.Sheldon Goldstein - manuscript
    With many Hamiltonians one can naturally associate a |Ψ|2-distributed Markov process. For nonrelativistic quantum mechanics, this process is in fact deterministic, and is known as Bohmian mechanics. For the Hamiltonian of a quantum field theory, it is typically a jump process on the configuration space of a variable number of particles. We define these processes for regularized quantum field theories, thereby generalizing previous work of John S. Bell [3] and of ourselves [11]. We introduce (...)
    Direct download  
     
    Export citation  
     
    Bookmark   3 citations  
  35. Lessons from realistic physics for the metaphysics of quantum theory.David Wallace - 2018 - Synthese:1-16.
    Quantum mechanics, and classical mechanics, are framework theories that incorporate many different concrete theories which in general cannot be arranged in a neat hierarchy, but discussion of ‘the ontology of quantum mechanics’ tends to proceed as if quantum mechanics were a single concrete theory, specifically the physics of nonrelativistically moving point particles interacting by long-range forces. I survey the problems this causes and make some suggestions for how a more physically realistic perspective ought (...)
    No categories
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   16 citations  
  36.  38
    Lessons from realistic physics for the metaphysics of quantum theory.David Wallace - 2020 - Synthese 197 (10):4303-4318.
    Quantum mechanics, and classical mechanics, are framework theories that incorporate many different concrete theories which in general cannot be arranged in a neat hierarchy, but discussion of ‘the ontology of quantum mechanics’ tends to proceed as if quantum mechanics were a single concrete theory, specifically the physics of nonrelativistically moving point particles interacting by long-range forces. I survey the problems this causes and make some suggestions for how a more physically realistic perspective ought (...)
    No categories
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   11 citations  
  37.  19
    Quantum Statistics of Identical Particles.J. C. Garrison - 2022 - Foundations of Physics 52 (4):1-18.
    The empirical rule that systems of identical particles always obey either Bose or Fermi statistics is customarily imposed on the theory by adding it to the axioms of nonrelativistic quantum mechanics, with the result that other statistical behaviors are excluded a priori. A more general approach is to ask what other many-particle statistics are consistent with the indistinguishability of identical particles. This strategy offers a way to discuss possible violations of the Pauli Exclusion Principle, and it leads (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  38. Is Time Handed in a Quantum World?Craig Callender - 2000 - Proceedings of the Aristotelian Society 100 (1):247-269.
    This paper considers the possibility that nonrelativistic quantum mechanics tells us that Nature cares about time reversal. In a classical world we have a fundamentally reversible world that appears irreversible at higher levels, e.g., the thermodynamic level. But in a quantum world we see, if I am correct, a fundamentally irreversible world that appears reversible at higher levels, e.g., the level of classical mechanics. I consider two related symmetries, time reversal invariance and what I call (...)
    Direct download (7 more)  
     
    Export citation  
     
    Bookmark   23 citations  
  39.  57
    On the structure of quantum logic.P. D. Finch - 1969 - Journal of Symbolic Logic 34 (2):275-282.
    In the axiomatic development of the logic of nonrelativistic quantum mechanics it is not difficult to set down certain plausible axioms which ensure that the quantum logic of propositions has the structure of an orthomodular poset. This can be done in a number of ways, for example, as in Gunson [2], Mackey [4], Piron [5], Varadarajan [7] and Zierler [8], and we summarise one of these ways in §2 below.
    Direct download (8 more)  
     
    Export citation  
     
    Bookmark   10 citations  
  40. On physics, metaphysics, and metametaphysics.Jonas R. Becker Arenhart & Raoni Wohnrath Arroyo - 2021 - Metaphilosophy 52 (2):175-199.
    Nonrelativistic quantum mechanics (QM) works perfectly well for all practical purposes. Once one admits, however, that a successful scientific theory is supposed not only to make predictions but also to tell us a story about the world in which we live, a philosophical problem emerges: in the specific case of QM, it is not possible to associate with the theory a unique scientific image of the world; there are several images. The fact that the theory may be (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   9 citations  
  41.  29
    Relativistic quantum events.Ph Blanchard & A. Jadczyk - 1996 - Foundations of Physics 26 (12):1669-1681.
    Standard quantum theory is inadequate to explain the mechanisms by which potential becomes actual. It is inadequate and therefore unable to describe generation of events. Niels Bohr emphasized long ago that the classical part of the world is necessary. John Bell stressed the same point: that “measurement≓ cannot even be defined within the standard quantum theory, and he sought a solution within hidden variable theories and his concept of “beables.≓Today it is customary to try to explain emergence of (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark  
  42. Quantum physics without quantum philosophy.Detlef Dürr, Sheldon Goldstein & Nino Zanghì - 1995 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 26 (2):137-149.
    Quantum philosophy, a peculiar twentieth-century malady, is responsible for most of the conceptual muddle plaguing the foundations of quantum physics. When this philosophy is eschewed, one naturally arrives at Bohmian mechanics, which is what emerges from Schrodinger's equation for a nonrelativistic system of particles when we merely insist that 'particles' means particles. While distinctly non-Newtonian, Bohmian mechanics is a fully deterministic theory of particles in motion, a motion choreographed by the wave function. The quantum (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   79 citations  
  43.  34
    Unity in quantum theory.Alfred Landé - 1971 - Foundations of Physics 1 (3):191-202.
    After a brief survey of arguments for a unitary particle theory of matter, offered by the writer in previous publications, the following new items are discussed. (1) The wave part of the dual aspect of matter, resting on the translation formula λ=h/p, is not covariant in the nonrelativistic domain. And relativistically, it is untenable not only on methodological grounds, but because it leads to obvious contradictions to elementary experience, e.g., in the equilibrium between a material oscillator and radiation. (2) (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  44.  5
    The Principles of Quantum Theory, From Planck's Quanta to the Higgs Boson: The Nature of Quantum Reality and the Spirit of Copenhagen.Arkady Plotnitsky - 2016 - Cham: Imprint: Springer.
    The book considers foundational thinking in quantum theory, focusing on the role the fundamental principles and principle thinking there, including thinking that leads to the invention of new principles, which is, the book contends, one of the ultimate achievements of theoretical thinking in physics and beyond. The focus on principles, prominent during the rise and in the immediate aftermath of quantum theory, has been uncommon in more recent discussions and debates concerning it. The book argues, however, that exploring (...)
    No categories
    Direct download  
     
    Export citation  
     
    Bookmark  
  45. Locality in the Everett Interpretation of Quantum Field Theory.Mark A. Rubin - 2002 - Foundations of Physics 32 (10):1495-1523.
    Recently it has been shown that transformations of Heisenberg-picture operators are the causal mechanism which allows Bell-theorem-violating correlations at a distance to coexist with locality in the Everett interpretation of quantum mechanics. A calculation to first order in perturbation theory of the generation of EPRB entanglement in nonrelativistic fermionic field theory in the Heisenberg picture illustrates that the same mechanism leads to correlations without nonlocality in quantum field theory as well. An explicit transformation is given to (...)
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark   6 citations  
  46.  22
    The Present Situation in Quantum Theory and its Merging with General Relativity.Andrei Khrennikov - 2017 - Foundations of Physics 47 (8):1077-1099.
    We discuss the problems of quantum theory complicating its merging with general relativity. QT is treated as a general theory of micro-phenomena—a bunch of models. Quantum mechanics and quantum field theory are the most widely known. The basic problems of QM and QFT are considered in interrelation. For QM, we stress its nonrelativistic character and the presence of spooky action at a distance. For QFT, we highlight the old problem of infinities. And this is the (...)
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  47. Quantum Mechanics, Metaphysics, and Bohm's Implicate Order.George Williams - 2019 - Mind and Matter 2 (17):155-186.
    The persistent interpretation problem for quantum mechanics may indicate an unwillingness to consider unpalatable assumptions that could open the way toward progress. With this in mind, I focus on the work of David Bohm, whose earlier work has been more influential than that of his later. As I’ll discuss, I believe two assumptions play a strong role in explaining the disparity: 1) that theories in physics must be grounded in mathematical structure and 2) that consciousness must supervene on (...)
    Direct download  
     
    Export citation  
     
    Bookmark  
  48. Can Quantum-Mechanical Description of Physical Reality Be Considered Complete?Albert Einstein, Boris Podolsky & Nathan Rosen - 1935 - Physical Review (47):777-780.
  49.  7
    Quantum Mechanics Based on an Extended Least Action Principle and Information Metrics of Vacuum Fluctuations.Jianhao M. Yang - 2024 - Foundations of Physics 54 (3):1-31.
    We show that the formulations of non-relativistic quantum mechanics can be derived from an extended least action principle. The principle can be considered as an extension of the least action principle from classical mechanics by factoring in two assumptions. First, the Planck constant defines the minimal amount of action a physical system needs to exhibit during its dynamics in order to be observable. Second, there is constant vacuum fluctuation along a classical trajectory. A novel method is introduced (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  50.  24
    The Quantum Mechanics of Minds and Worlds.Jeffrey A. Barrett - 1999 - Oxford, GB: Oxford University Press UK.
    Jeffrey Barrett presents the most comprehensive study yet of a problem that has puzzled physicists and philosophers since the 1930s. Quantum mechanics is in one sense the most successful physical theory ever, accurately predicting the behaviour of the basic constituents of matter. But it has an apparent ambiguity or inconsistency at its heart; Barrett gives a careful, clear, and challenging evaluation of attempts to deal with this problem.
1 — 50 / 1000