Results for 'Quantum hydrodynamic equations'

976 found
Order:
  1.  9
    Quantum Hydrodynamics: Kirchhoff Equations.K. V. S. Shiv Chaitanya - 2019 - Foundations of Physics 49 (4):351-364.
    In this paper, we show that the Kirchhoff equations are derived from the Schrödinger equation by assuming the wave function to be a polynomial like solution. These Kirchhoff equations describe the evolution of n point vortices in hydrodynamics. In two dimensions, Kirchhoff equations are used to demonstrate the solution to single particle Laughlin wave function as complex Hermite polynomials. We also show that the equation for optical vortices, a two dimentional system, is derived from Kirchhoff equation by (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  2.  3
    The Connection between Bohmian Mechanics and Many-Particle Quantum Hydrodynamics.Klaus Renziehausen & Ingo Barth - 2020 - Foundations of Physics 50 (8):772-798.
    Bohm developed the Bohmian mechanics, in which the Schrödinger equation is transformed into two differential equations: a continuity equation and an equation of motion similar to the Newtonian equation of motion. This transformation can be executed both for single-particle systems and for many-particle systems. Later, Kuzmenkov and Maksimov used basic quantum mechanics for the derivation of many-particle quantum hydrodynamics including one differential equation for the mass balance and two differential equations for the momentum balance, and we (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  3.  35
    Hydrodynamics of the Physical Vacuum: I. Scalar Quantum Sector.Valeriy I. Sbitnev - 2016 - Foundations of Physics 46 (5):606-619.
    Physical vacuum is a special superfluid medium. Its motion is described by the Navier–Stokes equation having two slightly modified terms that relate to internal forces. They are the pressure gradient and the dissipation force because of viscosity. The modifications are as follows: the pressure gradient contains an added term describing the pressure multiplied by the entropy gradient; time-averaged viscosity is zero, but its variance is not zero. Owing to these modifications, the Navier–Stokes equation can be reduced to the Schrödinger equation (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   3 citations  
  4.  29
    Toward a Thermo-hydrodynamic Like Description of Schrödinger Equation via the Madelung Formulation and Fisher Information.Eyal Heifetz & Eliahu Cohen - 2015 - Foundations of Physics 45 (11):1514-1525.
    We revisit the analogy suggested by Madelung between a non-relativistic time-dependent quantum particle, to a fluid system which is pseudo-barotropic, irrotational and inviscid. We first discuss the hydrodynamical properties of the Madelung description in general, and extract a pressure like term from the Bohm potential. We show that the existence of a pressure gradient force in the fluid description, does not violate Ehrenfest’s theorem since its expectation value is zero. We also point out that incompressibility of the fluid implies (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   5 citations  
  5.  14
    Generalized Lagrangian-Path Representation of Non-Relativistic Quantum Mechanics.Massimo Tessarotto & Claudio Cremaschini - 2016 - Foundations of Physics 46 (8):1022-1061.
    In this paper a new trajectory-based representation to non-relativistic quantum mechanics is formulated. This is ahieved by generalizing the notion of Lagrangian path which lies at the heart of the deBroglie-Bohm “ pilot-wave” interpretation. In particular, it is shown that each LP can be replaced with a statistical ensemble formed by an infinite family of stochastic curves, referred to as generalized Lagrangian paths. This permits the introduction of a new parametric representation of the Schrödinger equation, denoted as GLP-parametrization, and (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   3 citations  
  6.  14
    Relativistic Hydrodynamic Interpretation of de Broglie Matter Waves.Yuval Dagan - 2022 - Foundations of Physics 53 (1):1-11.
    We present a classical hydrodynamic analog of free relativistic quantum particles inspired by de Broglie’s pilot wave theory and recent developments in hydrodynamic quantum analogs. The proposed model couples a periodically forced Klein–Gordon equation with a nonrelativistic particle dynamics equation. The coupled equations may represent both quantum particles and classical particles driven by the gradients of locally excited Faraday waves. Exact stationary solutions of the coupled system reveal a highly nonlinear mechanism responsible for the (...)
    No categories
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  7.  26
    Hydrodynamics of the Physical Vacuum: II. Vorticity Dynamics.Valeriy I. Sbitnev - 2016 - Foundations of Physics 46 (10):1238-1252.
    Physical vacuum is a special superfluid medium populated by enormous amount of virtual particle-antiparticle pairs. Its motion is described by the modified Navier–Stokes equation: the pressure gradient divided by the mass density is replaced by the gradient from the quantum potential; time-averaged the viscosity vanishes, but its variance is not zero. Vortex structures arising in this medium show infinitely long lifetime owing to zero average viscosity. The nonzero variance is conditioned by exchanging the vortex energy with zero-point vacuum fluctuations. (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  8.  58
    Quantum Potential Energy as Concealed Motion.Peter Holland - 2015 - Foundations of Physics 45 (2):134-141.
    It is known that the Schrödinger equation may be derived from a hydrodynamic model in which the Lagrangian position coordinates of a continuum of particles represent the quantum state. Using Routh’s method of ignorable coordinates it is shown that the quantum potential energy of particle interaction that represents quantum effects in this model may be regarded as the kinetic energy of additional ‘concealed’ freedoms. The method brings an alternative perspective to Planck’s constant, which plays the role (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  9.  80
    A Numerical Solution of Ermakov Equation Corresponding to Diffusion Interpretation of Wave Mechanics.Victor Christianto & Florentin Smarandache - manuscript
    It has been long known that a year after Schrödinger published his equation, Madelung also published a hydrodynamics version of Schrödinger equation. Quantum diffusion is studied via dissipative Madelung hydrodynamics. Initially the wave packet spreads ballistically, than passes for an instant through normal diffusion and later tends asymptotically to a sub‐diffusive law. In this paper we will review two different approaches, including Madelung hydrodynamics and also Bohm potential. Madelung formulation leads to diffusion interpretation, which after a generalization yields to (...)
    Direct download  
     
    Export citation  
     
    Bookmark  
  10.  15
    Emergent Quantumness in Neural Networks.Mikhail I. Katsnelson & Vitaly Vanchurin - 2021 - Foundations of Physics 51 (5):1-20.
    It was recently shown that the Madelung equations, that is, a hydrodynamic form of the Schrödinger equation, can be derived from a canonical ensemble of neural networks where the quantum phase was identified with the free energy of hidden variables. We consider instead a grand canonical ensemble of neural networks, by allowing an exchange of neurons with an auxiliary subsystem, to show that the free energy must also be multivalued. By imposing the multivaluedness condition on the free (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  11. Macroscopic oil droplets mimicking quantum behavior: How far can we push an analogy?Louis Vervoort & Yves Gingras - manuscript
    We describe here a series of experimental analogies between fluid mechanics and quantum mechanics recently discovered by a team of physicists. These analogies arise in droplet systems guided by a surface (or pilot) wave. We argue that these experimental facts put ancient theoretical work by Madelung on the analogy between fluid and quantum mechanics into new light. After re-deriving Madelung’s result starting from two basic fluid-mechanical equations (the Navier-Stokes equation and the continuity equation), we discuss the relation (...)
    Direct download  
     
    Export citation  
     
    Bookmark  
  12.  83
    Variational principles in dynamics and quantum theory.Wolfgang Yourgrau & Stanley Mandelstam - 1955 - London,: Pitman. Edited by Stanley Mandelstam.
    Concentrating upon applications that are most relevant to modern physics, this valuable book surveys variational principles and examines their relationship to dynamics and quantum theory. Stressing the history and theory of these mathematical concepts rather than the mechanics, the authors provide many insights into the development of quantum mechanics and present much hard-to-find material in a remarkably lucid, compact form. After summarizing the historical background from Pythagoras to Francis Bacon, Professors Yourgrau and Mandelstram cover Fermat's principle of least (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   28 citations  
  13.  22
    Hamiltonian Structure of the Schrödinger Classical Dynamical System.Massimo Tessarotto, Michael Mond & Davide Batic - 2016 - Foundations of Physics 46 (9):1127-1167.
    The connection between quantum mechanics and classical statistical mechanics has motivated in the past the representation of the Schrödinger quantum-wave equation in terms of “projections” onto the quantum configuration space of suitable phase-space asymptotic kinetic models. This feature has suggested the search of a possible exact super-dimensional classical dynamical system, denoted as Schrödinger CDS, which uniquely determines the time-evolution of the underlying quantum state describing a set of N like and mutually interacting quantum particles. In (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  14.  28
    On Entropy Production in the Madelung Fluid and the Role of Bohm’s Potential in Classical Diffusion.Eyal Heifetz, Roumen Tsekov, Eliahu Cohen & Zohar Nussinov - 2016 - Foundations of Physics 46 (7):815-824.
    The Madelung equations map the non-relativistic time-dependent Schrödinger equation into hydrodynamic equations of a virtual fluid. While the von Neumann entropy remains constant, we demonstrate that an increase of the Shannon entropy, associated with this Madelung fluid, is proportional to the expectation value of its velocity divergence. Hence, the Shannon entropy may grow due to an expansion of the Madelung fluid. These effects result from the interference between solutions of the Schrödinger equation. Growth of the Shannon entropy (...)
    Direct download (7 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  15.  51
    Low Density Limit and the Quantum Langevin Equation for the Heat Bath.Ameur Dhahri - 2009 - In Krzysztof Stefanski (ed.), Open Systems and Information Dynamics. World scientific publishing company. pp. 16--04.
    Direct download  
     
    Export citation  
     
    Bookmark  
  16.  19
    Stern–Gerlach, EPRB and Bell Inequalities: An Analysis Using the Quantum Hamilton Equations of Stochastic Mechanics.Wolfgang Paul & Michael Beyer - 2024 - Foundations of Physics 54 (2):1-25.
    The discussion of the recently derived quantum Hamilton equations for a spinning particle is extended to spin measurement in a Stern–Gerlach experiment. We show that this theory predicts a continuously changing orientation of the particles magnetic moment over the course of its motion across the Stern–Gerlach apparatus. The final measurement results agree with experiment and with predictions of the Pauli equation. Furthermore, the Einstein–Podolsky–Rosen–Bohm thought experiment is investigated, and the violation of Bells’s inequalities is reproduced within this stochastic (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  17.  75
    Relativistic Brownian Motion and Gravity as an Eikonal Approximation to a Quantum Evolution Equation.O. Oron & L. P. Horwitz - 2005 - Foundations of Physics 35 (7):1181-1203.
    We solve the problem of formulating Brownian motion in a relativistically covariant framework in 3+1 dimensions. We obtain covariant Fokker–Planck equations with (for the isotropic case) a differential operator of invariant d’Alembert form. Treating the spacelike and timelike fluctuations separately in order to maintain the covariance property, we show that it is essential to take into account the analytic continuation of “unphysical” fluctuations.
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  18.  3
    Between Hydrodynamics and Elasticity Theory: The First Five Births of the Navier-Stokes Equation.Olivier Darrigol - 2002 - Archive for History of Exact Sciences 56 (2):95-150.
    No categories
    Direct download  
     
    Export citation  
     
    Bookmark   6 citations  
  19.  27
    Equivalent Quantum Equations in a System Inspired by Bouncing Droplets Experiments.Christian Borghesi - 2017 - Foundations of Physics 47 (7):933-958.
    In this paper we study a classical and theoretical system which consists of an elastic medium carrying transverse waves and one point-like high elastic medium density, called concretion. We compute the equation of motion for the concretion as well as the wave equation of this system. Afterwards we always consider the case where the concretion is not the wave source any longer. Then the concretion obeys a general and covariant guidance formula, which leads in low-velocity approximation to an equivalent de (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   3 citations  
  20.  7
    Quantum Theory from a Nonlinear Perspective : Riccati Equations in Fundamental Physics.Dieter Schuch - 2018 - Cham: Imprint: Springer.
    This book provides a unique survey displaying the power of Riccati equations to describe reversible and irreversible processes in physics and, in particular, quantum physics. Quantum mechanics is supposedly linear, invariant under time-reversal, conserving energy and, in contrast to classical theories, essentially based on the use of complex quantities. However, on a macroscopic level, processes apparently obey nonlinear irreversible evolution equations and dissipate energy. The Riccati equation, a nonlinear equation that can be linearized, has the potential (...)
    No categories
    Direct download  
     
    Export citation  
     
    Bookmark   1 citation  
  21.  26
    Quantum Walks, Weyl Equation and the Lorentz Group.Paolo Perinotti, Giacomo Mauro D’Ariano & Alessandro Bisio - 2017 - Foundations of Physics 47 (8):1065-1076.
    Quantum cellular automata and quantum walks provide a framework for the foundations of quantum field theory, since the equations of motion of free relativistic quantum fields can be derived as the small wave-vector limit of quantum automata and walks starting from very general principles. The intrinsic discreteness of this framework is reconciled with the continuous Lorentz symmetry by reformulating the notion of inertial reference frame in terms of the constants of motion of the (...) walk dynamics. In particular, among the symmetries of the quantum walk which recovers the Weyl equation—the so called Weyl walk—one finds a non linear realisation of the Poincaré group, which recovers the usual linear representation in the small wave-vector limit. In this paper we characterise the full symmetry group of the Weyl walk which is shown to be a non linear realization of a group which is the semidirect product of the Poincaré group and the group of dilations. (shrink)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  22. Hidden Variables as Computational Tools: The Construction of a Relativistic Spinor Field. [REVIEW]Peter Holland - 2006 - Foundations of Physics 36 (3):369-384.
    Hidden variables are usually presented as potential completions of the quantum description. We describe an alternative role for these entities, as aids to calculation in quantum mechanics. This is illustrated by the computation of the time-dependence of a massless relativistic spinor field obeying Weyl’s equation from a single-valued continuum of deterministic trajectories (the “hidden variables”). This is achieved by generalizing the exact method of state construction proposed previously for spin 0 systems to a general Riemannian manifold from which (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  23.  76
    Might Quantum-Induced Deviations from the Einstein Equations Detectably Affect Gravitational Wave Propagation?Adrian Kent - 2013 - Foundations of Physics 43 (6):707-718.
    A quantum measurement-like event can produce any of a number of macroscopically distinct results, with corresponding macroscopically distinct gravitational fields, from the same initial state. Hence the probabilistically evolving large-scale structure of space-time is not precisely or even always approximately described by the deterministic Einstein equations.Since the standard treatment of gravitational wave propagation assumes the validity of the Einstein equations, it is questionable whether we should expect all its predictions to be empirically verified. In particular, one might (...)
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark  
  24.  20
    Riccati Equations as a Scale-Relativistic Gateway to Quantum Mechanics.Saeed Naif Turki Al-Rashid, Mohammed A. Z. Habeeb & Tugdual S. LeBohec - 2020 - Foundations of Physics 50 (3):191-203.
    Applying the resolution–scale relativity principle to develop a mechanics of non-differentiable dynamical paths, we find that, in one dimension, stationary motion corresponds to an Itô process driven by the solutions of a Riccati equation. We verify that the corresponding Fokker–Planck equation is solved for a probability density corresponding to the squared modulus of the solution of the Schrödinger equation for the same problem. Inspired by the treatment of the one-dimensional case, we identify a generalization to time dependent problems in any (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  25.  38
    Model of the electron spin in stochastic physics.Gianfranco Spavieri - 1990 - Foundations of Physics 20 (1):45-61.
    The electron is conceived here as a complex structure composed of a subparticle that is bound to a nearly circular motion. Although in quantum mechanics the spin is not representable, in classical stochastic physics this corresponds to the angular momentum of the subparticle. In fact, assuming Schrödinger-type hydrodynamic equations of motion for the subparticle, the spin-1/2 representation in configuration space and the corresponding Pauli matrices for the electron are obtained. The Hamiltonian of Pauli's theory as the nonrelativistic (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  26.  43
    Interpretation of the hydrodynamical formalism of quantum mechanics.Sebastiano Sonego - 1991 - Foundations of Physics 21 (10):1135-1181.
    The hydrodynamical formalism for the quantum theory of a nonrelativistic particle is considered, together with a reformulation of it which makes use of the methods of kinetic theory and is based on the existence of the Wigner phase-space distribution. It is argued that this reformulation provides strong evidence in favor of the statistical interpretation of quantum mechanics, and it is suggested that this latter could be better understood as an almost classical statistical theory. Moreover, it is shown how, (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   3 citations  
  27.  22
    Einstein equations and Fierz-Pauli equations with self-interaction in quantum gravity.H. -H. V. Borzeszkowski & H. -J. Treder - 1994 - Foundations of Physics 24 (6):949-962.
    The Einstein equations can be written as Fierz-Pauli equations with self-interaction, $W\gamma _{ik} = - G_{ik} + \tfrac{1}{2}g_{ik} g^{mn} G_{mn} - k(T_{ik} - \tfrac{1}{2}g_{ik} g^{mn} T_{mn} )$ together with the covariant Hilbert-gauge condition, $(\gamma _i^h - \tfrac{1}{2}\delta _i^k g^{mn} \gamma _{mn} )_{;k} = 0$ where W denotes the covariant wave operator and G ik the Einstein tensor of the metric g ik collecting all nonlinear terms of Einstein's equations. As is known, there do not, however, exist plane-wave (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  28.  44
    Maxwell Equations—The One-Photon Quantum Equation.Alexander Gersten - 2001 - Foundations of Physics 31 (8):1211-1231.
    The Maxwell equations are shown to be the one-photon spin-one quantum equations. All Maxwell equations (without sources) are derived simultaneously from first principles, similar to those which have been used to derive the Dirac relativistic electron equation. The wavefunction is a linear combination of the electric and magnetic fields. The procedure is not unique, there are ambiguities of adding a scalar field. A quaternionic representation of the Maxwell equations (with sources) is constructed, a covariant reformulation (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  29.  28
    A first-order equation for spin in a manifestly relativistically covariant quantum theory.A. Arensburg & L. P. Horwitz - 1992 - Foundations of Physics 22 (8):1025-1039.
    Relativistic quantum mechanics has been formulated as a theory of the evolution ofevents in spacetime; the wave functions are square-integrable functions on the four-dimensional spacetime, parametrized by a universal invariant world time τ. The representation of states with spin is induced with a little group that is the subgroup of O(3, 1) leaving invariant a timelike vector nμ; a positive definite invariant scalar product, for which matrix elements of tensor operators are covariant, emerges from this construction. In a previous (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   3 citations  
  30.  93
    Time asymmetry and quantum equations of motion.T. E. Phipps - 1973 - Foundations of Physics 3 (4):435-455.
    Accepted quantum description is stochastic, yet history is nonstochastic, i.e., not representable by a probability distribution. Therefore ordinary quantum mechanics is unsuited to describe history. This is a limitation of the accepted quantum theory, rather than a failing of mechanics in general. To remove the limitation, it would be desirable to find a form of quantum mechanics that describes the future stochastically and the past nonstochastically. For this purpose it proves sufficient to introduce into quantum (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   9 citations  
  31.  14
    Relativistic equations in quantum mechanics.Eugene P. Wigner - 1973 - In Jagdish Mehra (ed.), The physicist's conception of nature. Boston,: Reidel. pp. 320--330.
    Direct download  
     
    Export citation  
     
    Bookmark   1 citation  
  32. On an intrinsic quantum theoretical structure inside Einstein's gravity field equations.Han Geurdes - manuscript
    As is well known, Einstein was dissatisfied with the foundation of quantum theory and sought to find a basis for it that would have satisfied his need for a causal explanation. In this paper this abandoned idea is investigated. It is found that it is mathematically not dead at all. More in particular: a quantum mechanical U(1) gauge invariant Dirac equation can be derived from Einstein's gravity field equations. We ask ourselves what it means for physics, the (...)
    Direct download  
     
    Export citation  
     
    Bookmark  
  33.  36
    Quantum equations of motion and the Liouville equation.Richard L. Liboff - 1987 - Foundations of Physics 17 (10):981-991.
  34. Field equations, quantum mechanics and geotropism.Han J. F. Geurdes - manuscript
    The biochemistry of geotropism in plants and gravisensing in e.g. cyanobacteria or paramacia is still not well understood today [1]. Perhaps there are more ways than one for organisms to sense gravity. The two best known relatively old explanations for gravity sensing are sensing through the redistribution of cellular starch statoliths and sensing through redistribution of auxin. The starch containing statoliths in a gravity field produce pressure on the endoplasmic reticulum of the cell. This enables the cell to sense direction. (...)
    Direct download  
     
    Export citation  
     
    Bookmark  
  35.  22
    Investigating Puzzling Aspects of the Quantum Theory by Means of Its Hydrodynamic Formulation.A. S. Sanz - 2015 - Foundations of Physics 45 (10):1153-1165.
    Bohmian mechanics, a hydrodynamic formulation of the quantum theory, constitutes a useful tool to understand the role of the phase as the mechanism responsible for the dynamical evolution displayed by quantum systems. This role is analyzed and discussed here in the context of quantum interference, considering to this end two well-known scenarios, namely Young’s two-slit experiment and Wheeler’s delayed choice experiment. A numerical implementation of the first scenario is used to show how interference in a coherent (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  36.  19
    The continuity equation and the Hamiltonian formalism in quantum mechanics.L. Ferrari - 1987 - Foundations of Physics 17 (4):329-343.
    The relationship between the continuity equation and the HamiltonianH of a quantum system is investigated from a nonstandard point of view. In contrast to the usual approaches, the expression of the current densityJ ψ is givenab initio by means of a transport-velocity operatorV T, whose existence follows from a “weak” formulation of the correspondence principle. Once given a Hilbert-space metricM, it is shown that the equation of motion and the continuity equation actually represent a system in theunknown operatorsH andV (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  37.  43
    The Schrödinger equation in quantum field theory.Jamal Nazrul Islam - 1994 - Foundations of Physics 24 (5):593-630.
    Some aspects of the Schrödinger equation in quantum field theory are considered in this article. The emphasis is on the Schrödinger functional equation for Yang-Mills theory, arising mainly out of Feynman's work on (2+1)-dimensional Yang-Mills theory, which he studied with a view to explaining the confinement of gluons. The author extended Feynman's work in two earlier papers, and the present article is partly a review of Feynman's and the author's work and some further extension of the latter. The primary (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  38.  39
    Nonperturbative, Unitary Quantum-Particle Scattering Amplitudes from Three-Particle Equations.James Lindesay & H. Pierre Noyes - 2004 - Foundations of Physics 34 (10):1573-1606.
    We here use our nonperturbative, cluster decomposable relativistic scattering formalism to calculate photon–spinor scattering, including the related particle–antiparticle annihilation amplitude. We start from a three-body system in which the unitary pair interactions contain the kinematic possibility of single quantum exchange and the symmetry properties needed to identify and substitute antiparticles for particles. We extract from it a unitary two-particle amplitude for quantum–particle scattering. We verify that we have done this correctly by showing that our calculated photon–spinor amplitude reduces (...)
    Direct download (7 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  39.  48
    Generalized KdV equation for fluid dynamics and quantum algebras.A. Ludu, R. A. Ionescu & W. Greiner - 1996 - Foundations of Physics 26 (5):665-678.
    We generalize the nonlinear one-dimensional equation of a fluid layer for any depth and length as an infinite-order differential equation for the steady waves. This equation can be written as a q-differential one, with its general solution written as a power series expansion with coefficients satisfying a nonlinear recurrence relation. In the limit of long and shallow water (shallow channels) we reobtain the well-known KdV equation together with its single-soliton solution.
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark  
  40.  55
    A Matter of Principle: The Principles of Quantum Theory, Dirac’s Equation, and Quantum Information.Arkady Plotnitsky - 2015 - Foundations of Physics 45 (10):1222-1268.
    This article is concerned with the role of fundamental principles in theoretical physics, especially quantum theory. The fundamental principles of relativity will be addressed as well, in view of their role in quantum electrodynamics and quantum field theory, specifically Dirac’s work, which, in particular Dirac’s derivation of his relativistic equation of the electron from the principles of relativity and quantum theory, is the main focus of this article. I shall also consider Heisenberg’s earlier work leading him (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   4 citations  
  41.  6
    Symmetries of Equations of Quantum Mechanics.Peter Olver - 1995 - Foundations of Physics 25 (11):1663-1665.
  42.  10
    The Schrödinger–Newton equation as a possible generator of quantum state reduction.Jasper van Wezel & Jeroen van den Brink - 2008 - Philosophical Magazine 88 (11):1659-1671.
  43.  39
    The Wheeler-DeWitt equation and the path integral in minisuperspace quantum cosmology.J. J. Halliwell - 1991 - In A. Ashtekar & J. Stachel (eds.), Conceptual Problems of Quantum Gravity. Birkhauser. pp. 1--75.
    Direct download  
     
    Export citation  
     
    Bookmark   1 citation  
  44.  1
    Quantum legacies: dispatches from an uncertain world.David Kaiser - 2020 - Chicago: University of Chicago Press.
    Physicists have grappled with quantum theory for over a century. They have learned to wring precise answers from the theory's governing equations, and no experiment to date has found compelling evidence to contradict it. Even so, the conceptual apparatus remains stubbornly, famously bizarre. Physicists have tackled these conceptual uncertainties while navigating still larger ones: the rise of fascism, cataclysmic world wars and a new nuclear age, an unsteady Cold War stand-off and its unexpected end. Quantum Legacies introduces (...)
    Direct download  
     
    Export citation  
     
    Bookmark  
  45.  37
    Splitting the Source Term for the Einstein Equation to Classical and Quantum Parts.T. S. Biró & P. Ván - 2015 - Foundations of Physics 45 (11):1465-1482.
    We consider the special and general relativistic extensions of the action principle behind the Schrödinger equation distinguishing classical and quantum contributions. Postulating a particular quantum correction to the source term in the classical Einstein equation we identify the conformal content of the above action and obtain classical gravitation for massive particles, but with a cosmological term representing off-mass-shell contribution to the energy–momentum tensor. In this scenario the—on the Planck scale surprisingly small—cosmological constant stems from quantum bound states (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark  
  46. If Quantum Mechanics Is the Solution, What Should the Problem Be?Vasil Penchev - 2020 - Philosophy of Science eJournal (Elsevier: SSRN) 13 (32):1-10.
    The paper addresses the problem, which quantum mechanics resolves in fact. Its viewpoint suggests that the crucial link of time and its course is omitted in understanding the problem. The common interpretation underlain by the history of quantum mechanics sees discreteness only on the Plank scale, which is transformed into continuity and even smoothness on the macroscopic scale. That approach is fraught with a series of seeming paradoxes. It suggests that the present mathematical formalism of quantum mechanics (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  47.  91
    Clifford Algebras and the Dirac-Bohm Quantum Hamilton-Jacobi Equation.B. J. Hiley & R. E. Callaghan - 2012 - Foundations of Physics 42 (1):192-208.
    In this paper we show how the dynamics of the Schrödinger, Pauli and Dirac particles can be described in a hierarchy of Clifford algebras, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}${\mathcal{C}}_{1,3}, {\mathcal{C}}_{3,0}$\end{document}, and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}${\mathcal{C}}_{0,1}$\end{document}. Information normally carried by the wave function is encoded in elements of a minimal left ideal, so that all the physical information appears within the algebra itself. The state of the quantum process can (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   5 citations  
  48.  80
    Can the Statistical Interpretation of Quantum Mechanics be Inferred from the Schrödinger Equation?—Bell and Gottfried.M. A. B. Whitaker - 2008 - Foundations of Physics 38 (5):436-447.
    In his paper titled ‘Against “measurement” ’ [Physics World 3(8), 33–40 [1990]], Bell criticised arguments that use the concept of measurement to justify the statistical interpretation of quantum theory. Among these was the text of Gottfried [Quantum Mechanics (Benjamin, New York, [1966])]. Gottfried has replied to this criticism, claiming to show that, for systems with both continuous and discrete degrees of freedom, the statistical interpretation for the discrete variables is implied by requiring that the continuous variables are described (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  49.  58
    Cartan–Weyl Dirac and Laplacian Operators, Brownian Motions: The Quantum Potential and Scalar Curvature, Maxwell’s and Dirac-Hestenes Equations, and Supersymmetric Systems. [REVIEW]Diego L. Rapoport - 2005 - Foundations of Physics 35 (8):1383-1431.
    We present the Dirac and Laplacian operators on Clifford bundles over space–time, associated to metric compatible linear connections of Cartan–Weyl, with trace-torsion, Q. In the case of nondegenerate metrics, we obtain a theory of generalized Brownian motions whose drift is the metric conjugate of Q. We give the constitutive equations for Q. We find that it contains Maxwell’s equations, characterized by two potentials, an harmonic one which has a zero field (Bohm-Aharonov potential) and a coexact term that generalizes (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   4 citations  
  50.  35
    The Born Rule and Time-Reversal Symmetry of Quantum Equations of Motion.Aleksey V. Ilyin - 2016 - Foundations of Physics 46 (7):845-851.
    It was repeatedly underlined in literature that quantum mechanics cannot be considered a closed theory if the Born Rule is postulated rather than derived from the first principles. In this work the Born Rule is derived from the time-reversal symmetry of quantum equations of motion. The derivation is based on a simple functional equation that takes into account properties of probability, as well as the linearity and time-reversal symmetry of quantum equations of motion. The derivation (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
1 — 50 / 976