Results for 'Fuzzy Time-Particle quantum Mechanics Interpretation'

1000+ found
Order:
  1. About Fuzzy time-Particle interpretation of Quantum Mechanics (it is not an innocent one!) version one.Farzad Didehvar - manuscript
    The major point in [1] chapter 2 is the following claim: “Any formalized system for the Theory of Computation based on Classical Logic and Turing Model of Computation leads us to a contradiction.” So, in the case we wish to save Classical Logic we should change our Computational Model. As we see in chapter two, the mentioned contradiction is about and around the concept of time, as it is in the contradiction of modified version of paradox. It is natural (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  2. SINGULARITIES About Fuzzy time- Particle interpretation of Quantum Mechanics (It is not an innocent one!) Version two.Farzad Didehvar - manuscript
    Here, we show that by accepting Fuzzy time-Particle interpretation of Quantum Mechanics, the singularities in the new Model are vanished.
    No categories
    Direct download  
     
    Export citation  
     
    Bookmark  
  3. Does accepting Fuzzy Time-Particle interpretation of Quantum Mechanics, refute the other interpretations? (Is fuzziness of time checkable experimentally?).Farzad Didehvar - manuscript
    Throughout this paper, in a nutshell we try to show a way to check Fuzzy time in general and Fuzzy time-Particle interpretation of Quantum Mechanics, experimentally. . -/- .
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  4. Double Slit Experiment About Fuzzy time- Particle interpretation of Quantum Mechanics (It is not an innocent one!) Version two.Farzad Didehvar - manuscript
    The question of some of the friends is: -/- How is it possible to explain “Double slit experiment” by “Fuzzy time-Particle Interpretation”?
    No categories
    Direct download  
     
    Export citation  
     
    Bookmark  
  5. Fuzzy time”, from paradox to paradox (Does it solve the contradiction between Quantum Mechanics & General Relativity?).Farzad Didehvar - manuscript
    Although Fuzzy logic and Fuzzy Mathematics is a widespread subject and there is a vast literature about it, yet the use of Fuzzy issues like Fuzzy sets and Fuzzy numbers was relatively rare in time concept. This could be seen in the Fuzzy time series. In addition, some attempts are done in fuzzing Turing Machines but seemingly there is no need to fuzzy time. Throughout this article, we try to change (...)
    No categories
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  6. Fuzzy time”, a Solution of Unexpected Hanging Paradox (a Fuzzy interpretation of Quantum Mechanics).Farzad Didehvar - manuscript
    Although Fuzzy logic and Fuzzy Mathematics is a widespread subject and there is a vast literature about it, yet the use of Fuzzy issues like Fuzzy sets and Fuzzy numbers was relatively rare in time concept. This could be seen in the Fuzzy time series. In addition, some attempts are done in fuzzing Turing Machines but seemingly there is no need to fuzzy time. Throughout this article, we try to change (...)
    No categories
    Direct download  
     
    Export citation  
     
    Bookmark   5 citations  
  7. Fuzzy Time, from Paradox to Paradox.Farzad Didehvar - manuscript
    Although Fuzzy logic and Fuzzy Mathematics is a widespread subject and there is a vast literature about it, yet the use of Fuzzy issues like Fuzzy sets and Fuzzy numbers was relatively rare in time concept. This could be seen in the Fuzzy time series. In addition, some attempts are done in fuzzing Turing Machines but seemingly there is no need to fuzzy time. Throughout this article, we try to change (...)
     
    Export citation  
     
    Bookmark  
  8. Computing Fuzzy Time Function.Farzad Didehvar - manuscript
    We consider time as a fuzzy concept. Based on this, the Fuzzy Time-Particle interpretation Of Quantum Mechanics is introduced as an interpretation of Quantum Mechanics [4],[5],[6]. Here, we show how to compute the function associated to Fuzzy time.
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  9.  17
    A Time–Space Symmetry Based Cylindrical Model for Quantum Mechanical Interpretations.Thuan Vo Van - 2017 - Foundations of Physics 47 (12):1559-1581.
    Following a bi-cylindrical model of geometrical dynamics, our study shows that a 6D-gravitational equation leads to geodesic description in an extended symmetrical time–space, which fits Hubble-like expansion on a microscopic scale. As a duality, the geodesic solution is mathematically equivalent to the basic Klein–Gordon–Fock equations of free massive elementary particles, in particular, the squared Dirac equations of leptons. The quantum indeterminism is proved to have originated from space–time curvatures. Interpretation of some important issues of quantum (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  10.  95
    The quantum mechanics and conceptuality: matter, histories, semantics, and space-time.Diederik Aerts - 2013 - Scientiae Studia 11 (1):75-99.
    Elaboramos aquí una nueva interpretación propuesta recientemente de la teoría cuántica, según la cual las partículas cuánticas son consideradas como entidades conceptuales que median entre los pedazos de materia ordinaria los cuales son considerados como estructuras de memoria para ellos. Nuestro objetivo es identificar qué es lo equivalente para el ámbito cognitivo humano de lo que el espacio-tiempo físico es para el ámbito de las partículas cuánticas y de la materia ordinaria. Para ello, se identifica la noción de "historia" como (...)
    Direct download (8 more)  
     
    Export citation  
     
    Bookmark   9 citations  
  11.  36
    Lagrangian Description for Particle Interpretations of Quantum Mechanics: Entangled Many-Particle Case.Roderick I. Sutherland - 2017 - Foundations of Physics 47 (2):174-207.
    A Lagrangian formulation is constructed for particle interpretations of quantum mechanics, a well-known example of such an interpretation being the Bohm model. The advantages of such a description are that the equations for particle motion, field evolution and conservation laws can all be deduced from a single Lagrangian density expression. The formalism presented is Lorentz invariant. This paper follows on from a previous one which was limited to the single-particle case. The present paper treats (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   5 citations  
  12.  47
    Quantum mechanics of space and time.H. S. Green - 1978 - Foundations of Physics 8 (7-8):573-591.
    A formulation of relativistic quantum mechanics is presented independent of the theory of Hilbert space and also independent of the hypothesis of spacetime manifold. A hierarchy is established in the nondistributive lattice of physical ensembles, and it is shown that the projections relating different members of the hierarchy form a semigroup. It is shown how to develop a statistical theory based on the definition of a statistical operator. Involutions defined on the matrix representations of the semigroup are interpreted (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  13.  37
    Quantum mechanics in Galilean space-time.Ray E. Artz - 1981 - Foundations of Physics 11 (11-12):839-862.
    The usual quantum mechanical treatment of a Schrödinger particle is translated into manifestly Galilean-invariant language, primarily through the use of Wigner-distribution methods. The hydrodynamical formulation of quantum mechanics is derived directly from the Wigner-distribution formulation, and the two formulations are compared. Wigner distributions are characterized directly, i.e., without reference to wave functions, and a heuristic interpretation of Wigner distributions and their evolution is developed.
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  14. Schrödinger's interpretation of quantum mechanics and the relevance of Bohr's experimental critique.Slobodan Perovic - 2006 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 37 (2):275-297.
    E. Schrödinger's ideas on interpreting quantum mechanics have been recently re-examined by historians and revived by philosophers of quantum mechanics. Such recent re-evaluations have focused on Schrödinger's retention of space–time continuity and his relinquishment of the corpuscularian understanding of microphysical systems. Several of these historical re-examinations claim that Schrödinger refrained from pursuing his 1926 wave-mechanical interpretation of quantum mechanics under pressure from the Copenhagen and Göttingen physicists, who misinterpreted his ideas in their (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   7 citations  
  15.  23
    A Local Interpretation of Quantum Mechanics.Carlos Lopez - 2016 - Foundations of Physics 46 (4):484-504.
    A local interpretation of quantum mechanics is presented. Its main ingredients are: first, a label attached to one of the “virtual” paths in the path integral formalism, determining the output for measurement of position or momentum; second, a mathematical model for spin states, equivalent to the path integral formalism for point particles in space time, with the corresponding label. The mathematical machinery of orthodox quantum mechanics is maintained, in particular amplitudes of probability and Born’s (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  16. If Quantum Mechanics Is the Solution, What Should the Problem Be?Vasil Penchev - 2020 - Philosophy of Science eJournal (Elsevier: SSRN) 13 (32):1-10.
    The paper addresses the problem, which quantum mechanics resolves in fact. Its viewpoint suggests that the crucial link of time and its course is omitted in understanding the problem. The common interpretation underlain by the history of quantum mechanics sees discreteness only on the Plank scale, which is transformed into continuity and even smoothness on the macroscopic scale. That approach is fraught with a series of seeming paradoxes. It suggests that the present mathematical formalism (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  17. On the Metaphysics of Quantum Mechanics.Valia Allori - 2013 - In Soazig Lebihan (ed.), La philosophie de la physique: d'aujourd'hui a demain. Editions Vuibert.
    What is quantum mechanics about? The most natural way to interpret quantum mechanics realistically as a theory about the world might seem to be what is called wave function ontology: the view according to which the wave function mathematically represents in a complete way fundamentally all there is in the world. Erwin Schroedinger was one of the first proponents of such a view, but he dismissed it after he realized it led to macroscopic superpositions (if the (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   10 citations  
  18. Quantum mechanics in terms of realism.Arthur Jabs - 2017 - arXiv.Org.
    We expound an alternative to the Copenhagen interpretation of the formalism of nonrelativistic quantum mechanics. The basic difference is that the new interpretation is formulated in the language of epistemological realism. It involves a change in some basic physical concepts. The ψ function is no longer interpreted as a probability amplitude of the observed behaviour of elementary particles but as an objective physical field representing the particles themselves. The particles are thus extended objects whose extension varies (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   7 citations  
  19.  87
    Quantum Mechanics: Myths and Facts. [REVIEW]Hrvoje Nikolić - 2007 - Foundations of Physics 37 (11):1563-1611.
    A common understanding of quantum mechanics (QM) among students and practical users is often plagued by a number of “myths”, that is, widely accepted claims on which there is not really a general consensus among experts in foundations of QM. These myths include wave-particle duality, time-energy uncertainty relation, fundamental randomness, the absence of measurement-independent reality, locality of QM, nonlocality of QM, the existence of well-defined relativistic QM, the claims that quantum field theory (QFT) solves the (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   13 citations  
  20.  34
    De Broglie's wave particle duality in the stochastic interpretation of quantum mechanics: A testable physical assumption. [REVIEW]Ph Gueret & J. -P. Vigier - 1982 - Foundations of Physics 12 (11):1057-1083.
    If one starts from de Broglie's basic relativistic assumptions, i.e., that all particles have an intrinsic real internal vibration in their rest frame, i.e., hv 0 =m 0 c 2 ; that when they are at any one point in space-time the phase of this vibration cannot depend on the choice of the reference frame, then, one can show (following Mackinnon (1) ) that there exists a nondispersive wave packet of de Broglie's waves which can be assimilated to the (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   4 citations  
  21.  33
    Quantum mechanics, emergence, and fundamentality.Peter J. Lewis - 2017 - Philosophica 92 (2).
    Quantum mechanics arguably provides the best evidence we have for strong emergence. Entangled pairs of particles apparently have properties that fail to supervene on the properties of the particles taken individually. But at the same time, quantum mechanics is a terrible place to look for evidence of strong emergence: the interpretation of the theory is so contested that drawing any metaphysical conclusions from it is risky at best. I run through the standard argument for (...)
    No categories
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark  
  22.  30
    Fixed past and uncertain future: A single-time covariant quantum particle mechanics[REVIEW]H. Pierre Noyes - 1975 - Foundations of Physics 5 (1):37-43.
    A covariant quantum mechanics for systems of finite-mass particles at finite energy follows from interpreting as Wick-Yukawa fluctuations in particle number the quantum fluctuations which are needed by Phipps to understand measurement theory and by Gyftopoulos to understand the second law of thermodynamics. The dynamical one-variable equations require as input the (N − 1)-particle transition matrices and an N-N vertex or coupling constants at three-particle vertices.
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   3 citations  
  23.  5
    Quantum Mechanics: Myths and Facts.Nikolic Hrvoje - 2007 - Foundations of Physics 37 (11):1563-1611.
    A common understanding of quantum mechanics (QM) among students and practical users is often plagued by a number of “myths”, that is, widely accepted claims on which there is not really a general consensus among experts in foundations of QM. These myths include wave-particle duality, time-energy uncertainty relation, fundamental randomness, the absence of measurement-independent reality, locality of QM, nonlocality of QM, the existence of well-defined relativistic QM, the claims that quantum field theory (QFT) solves the (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   6 citations  
  24.  38
    On time, causation and explanation in the causally symmetric Bohmian model of quantum mechanics.Joseph Berkovitz - 2017 - In Philippe Huneman & Christophe Bouton (eds.), Time of Nature and the Nature of Time: Philosophical Perspectives of Time in Natural Sciences. Cham: Springer. pp. 139-172.
    Quantum mechanics portrays the universe as involving non-local influences that are difficult to reconcile with relativity theory. By postulating backward causation, retro-causal interpretations of quantum mechanics could circumvent these influences and accordingly reconcile quantum mechanics with relativity. The postulation of backward causation poses various challenges for the retro-causal interpretations of quantum mechanics and for the existing conceptual frameworks for analyzing counterfactual dependence, causation and causal explanation. In this chapter, we analyze the nature (...)
    No categories
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  25. Mass Time, Mass System, Electrical Charge Time (Infinities in Physics).Farzad Didehvar - manuscript
    Here, we continue the discussion in [1], about infinities in Physics. Our goal is to create a Mathematical system to give a probable explanation for infinities in QED, based on Fuzzy time. This Mathematical system should be sufficiently satisfactory and Simple. In general, our goal of these series, is to provide more reasons to consider time as a fuzzy concept in a way that is explained in [4], [5], [6].
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  26.  58
    Relativistic quantum mechanics of spin-0 and spin-1 bosons.Partha Ghose - 1996 - Foundations of Physics 26 (11):1441-1455.
    It is shown that below the threshold of pair creation, a consistent quantum mechanical interpretation of relativistic spin-0 and spin-1 particles (both massive and mussless) ispossible based an the Hamiltonian-Schrödinger form of the firstorder Kemmer equation together with a first-class constraint. The crucial element is the identification of a conserved four-vector current associated with the equation of motion, whose time component is proportional to the energy density which is constrainedto be positive definite for allsolutions. Consequently, the antiparticles (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  27. Quantum Physics: an overview of a weird world: A primer on the conceptual foundations of quantum physics.Marco Masi - 2019 - Indy Edition.
    This is the first book in a two-volume series. The present volume introduces the basics of the conceptual foundations of quantum physics. It appeared first as a series of video lectures on the online learning platform Udemy.]There is probably no science that is as confusing as quantum theory. There's so much misleading information on the subject that for most people it is very difficult to separate science facts from pseudoscience. The goal of this book is to make you (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  28. Aspects of objectivity in quantum mechanics.Harvey R. Brown - 1999 - In Jeremy Butterfield & Constantine Pagonis (eds.), From Physics to Philosophy. Cambridge University Press. pp. 45--70.
    The purpose of the paper is to explore different aspects of the covariance of non-relativistic quantum mechanics. First, doubts are expressed concerning the claim that gauge fields can be 'generated' by way of imposition of gauge covariance of the single-particle wave equation. Then a brief review is given of Galilean covariance in the general case of external fields, and the connection between Galilean boosts and gauge transformations. Under time-dependent translations the geometric phase associated with Schrödinger evolution (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   23 citations  
  29.  40
    Copenhagen Quantum Mechanics Emerges from a Deterministic Schrödinger Theory in 11 Dimensional Spacetime Including Weak Field Gravitation.G. Doyen & D. Drakova - 2015 - Foundations of Physics 45 (8):959-999.
    We construct a world model consisting of a matter field living in 4 dimensional spacetime and a gravitational field living in 11 dimensional spacetime. The seven hidden dimensions are compactified within a radius estimated by reproducing the particle–wave characteristics of diffraction experiments. In the presence of matter fields the gravitational field develops localized modes with elementary excitations called gravonons which are induced by the sources. The final world model treated here contains only gravonons and a scalar matter field. The (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark  
  30.  40
    An interpretation within philosophy of the relationship between classical mechanics and quantum mechanics.Patrick Sibelius - 1989 - Foundations of Physics 19 (11):1315-1326.
    A mapping of a finite directed graph onto a curve in space-time is considered. The mapping induces the dynamics of a free particle moving along the curve. The distinction between the Lagrangian and the Hamiltonian formulation of particle mechanics is expressed in terms of the distinction between referring to a particle in space and time and referring to the points in space which the particle occupies, respectively. These elements are combined to yield an (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  31.  65
    Quantum mechanics as demanded by the special theory of relativity.Charles Harding - 1977 - Foundations of Physics 7 (1-2):69-76.
    We present a new approach on the interpretation of the quantum mechanism. The derivation is phenomenological and incorporates an energetic vacuum which interacts with elementary particles. We consider a classical ensemble average for the square of 4-velocities of identical elementary particles with the same initial conditions in Minkowski space. The relativistic extension of a result in Brownian motion allows the variance to be identified with Bohm's quantum potential. A simple relation between 4-velocities and 4-momenta at a specific (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  32.  8
    Sneaking a Look at God's Cards: Unraveling the Mysteries of Quantum Mechanics.G. C. Ghirardi - 2004
    Quantum mechanics, which describes the behavior of subatomic particles, seems to challenge common sense. Waves behave like particles; particles behave like waves. You can tell where a particle is, but not how fast it is moving--or vice versa. An electron faced with two tiny holes will travel through both at the same time, rather than one or the other. And then there is the enigma of creation ex nihilo, in which small particles appear with their so-called (...)
    Direct download  
     
    Export citation  
     
    Bookmark   17 citations  
  33. This Year's Nobel Prize (2022) in Physics for Entanglement and Quantum Information: the New Revolution in Quantum Mechanics and Science.Vasil Penchev - 2023 - Philosophy of Science eJournal (Elsevier: SSRN) 18 (33):1-68.
    The paper discusses this year’s Nobel Prize in physics for experiments of entanglement “establishing the violation of Bell inequalities and pioneering quantum information science” in a much wider, including philosophical context legitimizing by the authority of the Nobel Prize a new scientific area out of “classical” quantum mechanics relevant to Pauli’s “particle” paradigm of energy conservation and thus to the Standard model obeying it. One justifies the eventual future theory of quantum gravitation as belonging to (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  34. Atomism in Quantum Mechanics and Information.Vasil Penchev - 2020 - Metaphysics eJournal (Elsevier: SSRN) 13 (12):1-11.
    The original conception of atomism suggests “atoms”, which cannot be divided more into composing parts. However, the name “atom” in physics is reserved for entities, which can be divided into electrons, protons, neutrons and other “elementary particles”, some of which are in turn compounded by other, “more elementary” ones. Instead of this, quantum mechanics is grounded on the actually indivisible quanta of action limited by the fundamental Planck constant. It resolves the problem of how both discrete and continuous (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  35.  79
    Interpreting Quantum Mechanics in Terms of Random Discontinuous Motion of Particles.Shan Gao - unknown
    This thesis is an attempt to reconstruct the conceptual foundations of quantum mechanics. First, we argue that the wave function in quantum mechanics is a description of random discontinuous motion of particles, and the modulus square of the wave function gives the probability density of the particles being in certain locations in space. Next, we show that the linear non-relativistic evolution of the wave function of an isolated system obeys the free Schrödinger equation due to the (...)
    Direct download (6 more)  
     
    Export citation  
     
    Bookmark   23 citations  
  36. Time in Quantum Mechanics.Jan Hilgevoord & David Atkinson - 2001 - In Craig Callender (ed.), The Oxford Handbook of Philosophy of Time. Oxford University Press.
    Time is often said to play in quantum mechanics an essentially different role from position: whereas position is represented by a Hermitian operator, time is represented by a c-number. This discrepancy has been found puzzling and has given rise to a vast literature and many efforts at a solution. In this paper it is argued that the discrepancy is only apparent and that there is nothing in the formalism of quantum mechanics that forces us (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   13 citations  
  37.  14
    Generalized Lagrangian-Path Representation of Non-Relativistic Quantum Mechanics.Massimo Tessarotto & Claudio Cremaschini - 2016 - Foundations of Physics 46 (8):1022-1061.
    In this paper a new trajectory-based representation to non-relativistic quantum mechanics is formulated. This is ahieved by generalizing the notion of Lagrangian path which lies at the heart of the deBroglie-Bohm “ pilot-wave” interpretation. In particular, it is shown that each LP can be replaced with a statistical ensemble formed by an infinite family of stochastic curves, referred to as generalized Lagrangian paths. This permits the introduction of a new parametric representation of the Schrödinger equation, denoted as (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   3 citations  
  38.  45
    Quantization of space-time and the corresponding quantum mechanics.M. Banai - 1985 - Foundations of Physics 15 (12):1203-1245.
    An axiomatic framework for describing general space-time models is presented. Space-time models to which irreducible propositional systems belong as causal logics are quantum (q) theoretically interpretable and their event spaces are Hilbert spaces. Such aq space-time is proposed via a “canonical” quantization. As a basic assumption, the time t and the radial coordinate r of aq particle satisfy the canonical commutation relation [t,r]=±i $h =$ . The two cases will be considered simultaneously. In that (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  39.  29
    The Transition from Quantum Field Theory to One-Particle Quantum Mechanics and a Proposed Interpretation of Aharonov–Bohm Effect.Benliang Li, Daniel W. Hewak & Qi Jie Wang - 2018 - Foundations of Physics 48 (7):837-852.
    In this article, we demonstrate a sense in which the one-particle quantum mechanics and the classical electromagnetic four-potential arise from the quantum field theory. In addition, the classical Maxwell equations are derived from the QFT scattering process, while both classical electromagnetic fields and potentials serve as mathematical tools to approximate the interactions among elementary particles described by QFT physics. Furthermore, a plausible interpretation of the Aharonov–Bohm effect is raised within the QFT framework. We provide a (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark  
  40.  86
    Randomness in Classical Mechanics and Quantum Mechanics.Igor V. Volovich - 2011 - Foundations of Physics 41 (3):516-528.
    The Copenhagen interpretation of quantum mechanics assumes the existence of the classical deterministic Newtonian world. We argue that in fact the Newton determinism in classical world does not hold and in the classical mechanics there is fundamental and irreducible randomness. The classical Newtonian trajectory does not have a direct physical meaning since arbitrary real numbers are not observable. There are classical uncertainty relations: Δq>0 and Δp>0, i.e. the uncertainty (errors of observation) in the determination of coordinate (...)
    Direct download (6 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  41. Quantum-information conservation. The problem about “hidden variables”, or the “conservation of energy conservation” in quantum mechanics: A historical lesson for future discoveries.Vasil Penchev - 2020 - Energy Engineering (Energy) eJournal (Elsevier: SSRN) 3 (78):1-27.
    The explicit history of the “hidden variables” problem is well-known and established. The main events of its chronology are traced. An implicit context of that history is suggested. It links the problem with the “conservation of energy conservation” in quantum mechanics. Bohr, Kramers, and Slaters (1924) admitted its violation being due to the “fourth Heisenberg uncertainty”, that of energy in relation to time. Wolfgang Pauli rejected the conjecture and even forecast the existence of a new and unknown (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  42.  69
    Objective Probability and Quantum Fuzziness.U. Mohrhoff - 2009 - Foundations of Physics 39 (2):137-155.
    This paper offers a critique of the Bayesian interpretation of quantum mechanics with particular focus on a paper by Caves, Fuchs, and Schack containing a critique of the “objective preparations view” or OPV. It also aims to carry the discussion beyond the hardened positions of Bayesians and proponents of the OPV. Several claims made by Caves et al. are rebutted, including the claim that different pure states may legitimately be assigned to the same system at the same (...)
    Direct download (9 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  43.  91
    Particles and Paradoxes: The Limits of Quantum Logic.Peter Gibbins - 1987 - New York: Cambridge University Press.
    Quantum theory is our deepest theory of the nature of matter. It is a theory that, notoriously, produces results which challenge the laws of classical logic and suggests that the physical world is illogical. This book gives a critical review of work on the foundations of quantum mechanics at a level accessible to non-experts. Assuming his readers have some background in mathematics and physics, Peter Gibbins focuses on the questions of whether the results of quantum theory (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   24 citations  
  44.  38
    A modified set of Feynman postulates in quantum mechanics.V. K. Thankappan & P. Gopalakrishna Nambi - 1980 - Foundations of Physics 10 (3-4):217-236.
    Certain modifications, by way of improvement, are proposed for the Feynman postulates in quantum mechanics. These modifications incorporate a criterion for the applicability of the principle of superposition. It is shown that the modified postulates, together with certain assumptions regarding the trajectory of a particle, lead to an expression for the position-momentum uncertainty relationship which is broadly in agreement with the conventional expression. The time-energy uncertainty relationship is, however, found to have a likely place only in (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  45.  44
    On the electromagnetic interaction in relativistic quantum mechanics.L. P. Horwitz - 1984 - Foundations of Physics 14 (10):1027-1046.
    A fundamental problem in the construction of local electromagnetic interactions in the framework of relativistic wave equations of Klein-Gordon or Dirac type is discussed, and shown to be resolved in a relativistic quantum theory of events described by functions in a Hilbert space on the manifold of space-time. The relation, abstracted from the structure of the electromagnetic current, between sequences of events, parametrized by an evolution parameter τ (“historical time”), and the commonly accepted notion of particles is (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   3 citations  
  46. Why quantum mechanics favors adynamical and acausal interpretations such as relational blockworld over backwardly causal and time-symmetric rivals.Michael Silberstein, Michael Cifone & William Mark Stuckey - 2008 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 39 (4):736-751.
    We articulate the problems posed by the quantum liar experiment (QLE) for backwards causation interpretations of quantum mechanics, time-symmetric accounts and other dynamically oriented local hidden variable theories. We show that such accounts cannot save locality in the case of QLE merely by giving up “lambda-independence.” In contrast, we show that QLE poses no problems for our acausal Relational Blockworld interpretation of quantum mechanics, which invokes instead adynamical global constraints to explain Einstein–Podolsky–Rosen (EPR) (...)
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark   7 citations  
  47.  28
    Relational Event-Time in Quantum Mechanics.Matías Pasqualini, Olimpia Lombardi & Sebastian Fortin - 2021 - Foundations of Physics 52 (1):1-25.
    Some authors, inspired by the theoretical requirements for the formulation of a quantum theory of gravity, proposed a relational reconstruction of the quantum parameter-time—the time of the unitary evolution, which would make quantum mechanics compatible with relativity. The aim of the present work is to follow the lead of those relational programs by proposing a relational reconstruction of the event-time—which orders the detection of the definite values of the system’s observables. Such a reconstruction (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  48. Zeno Paradox, Unexpected Hanging Paradox (Modeling of Reality & Physical Reality, A Historical-Philosophical view).Farzad Didehvar - manuscript
    . In our research about Fuzzy Time and modeling time, "Unexpected Hanging Paradox" plays a major role. Here, we compare this paradox to the Zeno Paradox and the relations of them with our standard models of continuum and Fuzzy numbers. To do this, we review the project "Fuzzy Time and Possible Impacts of It on Science" and introduce a new way in order to approach the solutions for these paradoxes. Additionally, we have a more (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark  
  49. Zeno Paradox, Unexpected Hanging Paradox (Modeling of Reality & Physical Reality, A Historical-Philosophical view).Farzad Didehvar - manuscript
    In our research about Fuzzy Time and modeling time, "Unexpected Hanging Paradox" plays a major role. Here, we compare this paradox to the Zeno Paradox and the relations of them with our standard models of continuum and Fuzzy numbers. To do this, we review the project "Fuzzy Time and Possible Impacts of It on Science" and introduce a new way in order to approach the solutions for these paradoxes. Additionally, we have a more general (...)
    No categories
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  50. Time, quantum mechanics, and probability.Simon Saunders - 1998 - Synthese 114 (3):373-404.
    A variety of ideas arising in decoherence theory, and in the ongoing debate over Everett's relative-state theory, can be linked to issues in relativity theory and the philosophy of time, specifically the relational theory of tense and of identity over time. These have been systematically presented in companion papers (Saunders 1995; 1996a); in what follows we shall consider the same circle of ideas, but specifically in relation to the interpretation of probability, and its identification with relations in (...)
    Direct download (11 more)  
     
    Export citation  
     
    Bookmark   88 citations  
1 — 50 / 1000