In Soazig Lebihan (ed.), Precis de la Philosophie de la Physique. Vuibert (2013)

Valia Allori
Northern Illinois University
What is quantum mechanics about? The most natural way to interpret quantum mechanics realistically as a theory about the world might seem to be what is called wave function ontology: the view according to which the wave function mathematically represents in a complete way fundamentally all there is in the world. Erwin Schroedinger was one of the first proponents of such a view, but he dismissed it after he realized it led to macroscopic superpositions (if the wave function evolves in time according to the equations that has his name). The Many-Worlds interpretation1 accepts the existence of such macroscopic superpositions but takes it that they can never be observed. Superposed objects and superposed observers split together in different worlds of the type of the one we appear to live in. For these who, like Schroedinger, think that macroscopic superpositions are a problem, the common wisdom is that there are two alternative views: "Either the wave function, as given by the Schroedinger equation, is not everything, or is not right" [Bell 1987]. The deBroglie-Bohm theory, now commonly known as Bohmian Mechanics, takes the first option: the description provided by a Schroedinger-evolving wave function is supplemented by the information provided by the configuration of the particles. The second possibility consists in assuming that, while the wave function provides the complete description of the system, its temporal evolution is not given by the Schroedinger equation. Rather, the usual Schroedinger evolution is interrupted by random and sudden "collapses". The most promising theory of this kind is the GRW theory, named after the scientists that developed it: Gian Carlo Ghirardi, Alberto Rimini and Tullio Weber.. It seems tempting to think that in GRW we can take the wave function ontologically seriously and avoid the problem of macroscopic superpositions just allowing for quantum jumps. In this paper we will argue that such "bare" wave function ontology is not possible, neither for GRW nor for any other quantum theory: quantum mechanics cannot be about the wave function simpliciter. That is, we need more structure than the one provided by the wave function. As a response, quantum theories about the wave function can be supplemented with structure, without taking it as an additional ontology. We argue in reply that such "dressed-up" versions of wave function ontology are not sensible, since they compromise the acceptability of the theory as a satisfactory fundamental physical theory. Therefore we maintain that: 1- Strictly speaking, it is not possible to interpret quantum theories as theories about the wave function; 2- Even if the wave function is supplemented by additional non-ontological structures, there are reasons not to take the resulting theory seriously. Moreover, we will argue that any of the traditional responses to the measurement problem of quantum mechanics (Bohmian mechanics, GRW and Many-Worlds), contrarily to what commonly believed, share a common structure. That is, we maintain that: 3- All quantum theories should be regarded as theories in which physical objects are constituted by a primitive ontology. The primitive ontology is mathematically represented in the theory by a mathematical entity in three-dimensional space, or space-time.
Keywords quantum mechanics, interpretations  common structure of fundamental physical theories  primitive ontology  quantum mechanics, metaphysics  wave function ontology
Categories (categorize this paper)
Reprint years 2012, 2013
Buy the book Find it on
Edit this record
Mark as duplicate
Export citation
Find it on Scholar
Request removal from index
Revision history

Download options

PhilArchive copy

Upload a copy of this paper     Check publisher's policy     Papers currently archived: 69,959
External links

Setup an account with your affiliations in order to access resources via your University's proxy server
Configure custom proxy (use this if your affiliation does not provide a proxy)
Through your library

References found in this work BETA

Many-Worlds Interpretation of Quantum Mechanics.Lev Vaidman - 2008 - Stanford Encyclopedia of Philosophy.
A Philosopher Looks at Quantum Mechanics (Again).Hilary Putnam - 2005 - British Journal for the Philosophy of Science 56 (4):615-634.

View all 14 references / Add more references

Citations of this work BETA

Primitive Ontology in a Nutshell.Valia Allori - 2015 - International Journal of Quantum Foundations 1 (2):107-122.
Epistemology of Wave Function Collapse in Quantum Physics.Charles Wesley Cowan & Roderich Tumulka - 2016 - British Journal for the Philosophy of Science 67 (2):405-434.
Grounded Shadows, Groundless Ghosts.Ezra Rubenstein - forthcoming - British Journal for the Philosophy of Science:axaa008.

View all 8 citations / Add more citations

Similar books and articles


Added to PP index

Total views
245 ( #44,972 of 2,504,809 )

Recent downloads (6 months)
6 ( #119,383 of 2,504,809 )

How can I increase my downloads?


My notes